skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diameter estimates in K\"ahler geometry
Diameter estimates for K\"ahler metrics are established which require only an entropy bound and no lower bound on the Ricci curvature. The proof builds on recent PDE techniques for $$L^\infty$$ estimates for the Monge-Amp\`ere equation, with a key improvement allowing degeneracies of the volume form of codimension strictly greater than one. As a consequence, diameter bounds are obtained for long-time existence of the K\"ahler-Ricci flow and finite-time solutions when the K\"ahler class is big, as well as for special vibrations of Calabi-Yau manifolds.  more » « less
Award ID(s):
2203273
PAR ID:
10542014
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Communications on pure and applied mathematics
ISSN:
0010-3640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this work, we obtain a local maximum principle along the Ricci flow $g(t)$ under the condition that $$\mathrm {Ric}(g(t))\le {\alpha } t^{-1}$$ for $t>0$ for some constant $${\alpha }>0$$ . As an application, we will prove that under this condition, various kinds of curvatures will still be nonnegative for $t>0$ , provided they are non-negative initially. These extend the corresponding known results for Ricci flows on compact manifolds or on complete noncompact manifolds with bounded curvature . By combining the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower bound of different kinds of curvatures along the Ricci flows for $t>0$ . 
    more » « less
  2. We develop Green’s function estimates for manifolds satisfying a weighted Poincaré inequality together with a compatible lower bound on the Ricci curvature. This estimate is then applied to establish existence and sharp estimates of solutions to the Poisson equation on such manifolds. As an application, a Liouville property for finite energy holomorphic functions is proven on a class of complete Kähler manifolds. Consequently, such Kähler manifolds must be connected at infinity. 
    more » « less
  3. Gortz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J.; Herman, Grzegorz (Ed.)
    Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis (SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper bounds. In directed graphs, however, where only some of the upper bounds apply, much larger gaps remain. Since d(u,v) may not be the same as d(v,u), there are multiple ways to define the problem, the two most natural being the (one-way) diameter (max_(u,v) d(u,v)) and the roundtrip diameter (max_{u,v} d(u,v)+d(v,u)). In this paper we make progress on the outstanding open question for each of them. - We design the first algorithm for diameter in sparse directed graphs to achieve n^{1.5-ε} time with an approximation factor better than 2. The new upper bound trade-off makes the directed case appear more similar to the undirected case. Notably, this is the first algorithm for diameter in sparse graphs that benefits from fast matrix multiplication. - We design new hardness reductions separating roundtrip diameter from directed and undirected diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes k-Cycle hypothesis, and any (2-ε)-approximation would imply a breakthrough algorithm for approximate 𝓁_∞-Closest-Pair. Notably, these are the first conditional lower bounds for diameter that are not based on SETH. 
    more » « less
  4. Abstract We first provide a stochastic formula for the Carathéodory distance in terms of general Markovian couplings and prove a comparison result between the Carathéodory distance and the complete Kähler metric with a negative lower curvature bound using the Kendall–Cranston coupling. This probabilistic approach gives a version of the Schwarz lemma on complete noncompact Kähler manifolds with a further decomposition Ricci curvature into the orthogonal Ricci curvature and the holomorphic sectional curvature, which cannot be obtained by using Yau–Royden's Schwarz lemma. We also prove coupling estimates on quaternionic Kähler manifolds. As a by‐product, we obtain an improved gradient estimate of positive harmonic functions on Kähler manifolds and quaternionic Kähler manifolds under lower curvature bounds. 
    more » « less
  5. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis (SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper bounds. In directed graphs, however, where only some of the upper bounds apply, much larger gaps remain. Since d(u,v) may not be the same as d(v,u), there are multiple ways to define the problem, the two most natural being the (one-way) diameter (max_(u,v) d(u,v)) and the roundtrip diameter (max_{u,v} d(u,v)+d(v,u)). In this paper we make progress on the outstanding open question for each of them. - We design the first algorithm for diameter in sparse directed graphs to achieve n^{1.5-ε} time with an approximation factor better than 2. The new upper bound trade-off makes the directed case appear more similar to the undirected case. Notably, this is the first algorithm for diameter in sparse graphs that benefits from fast matrix multiplication. - We design new hardness reductions separating roundtrip diameter from directed and undirected diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes k-Cycle hypothesis, and any (2-ε)-approximation would imply a breakthrough algorithm for approximate 𝓁_∞-Closest-Pair. Notably, these are the first conditional lower bounds for diameter that are not based on SETH. 
    more » « less