skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Some local maximum principles along Ricci flows
Abstract In this work, we obtain a local maximum principle along the Ricci flow $g(t)$ under the condition that $$\mathrm {Ric}(g(t))\le {\alpha } t^{-1}$$ for $t>0$ for some constant $${\alpha }>0$$ . As an application, we will prove that under this condition, various kinds of curvatures will still be nonnegative for $t>0$ , provided they are non-negative initially. These extend the corresponding known results for Ricci flows on compact manifolds or on complete noncompact manifolds with bounded curvature . By combining the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower bound of different kinds of curvatures along the Ricci flows for $t>0$ .  more » « less
Award ID(s):
1709894
PAR ID:
10258184
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Canadian Journal of Mathematics
ISSN:
0008-414X
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We verify a conjecture of Perelman, which states that there exists a canonical Ricci flow through singularities starting from an arbitrary compact Riemannian 3‑manifold. Our main result is a uniqueness theorem for such flows, which, together with an earlier existence theorem of Lott and the second named author, implies Perelman’s conjecture. We also show that this flow through singularities depends continuously on its initial condition and that it may be obtained as a limit of Ricci flows with surgery. Our results have applications to the study of diffeomorphism groups of 3‑manifolds—in particular to the generalized Smale conjecture—which will appear in a subsequent paper. 
    more » « less
  2. Abstract A version of the singular Yamabe problem in smooth domains in a closed manifoldyields complete conformal metrics with negative constant scalar curvatures.In this paper, we study the blow-up phenomena of Ricci curvatures of these metrics on domains whose boundary is close to a certain limit set of a lower dimension.We will characterize the blow-up set according to the Yamabe invariant of the underlying manifold.In particular, we will prove that all points in the lower dimension part of the limit set belong to the blow-up set on manifolds not conformally equivalent to the standard sphere and that all but one point in the lower dimension part of the limit set belong to the blow-up set on manifolds conformally equivalent to the standard sphere.In certain cases, the blow-up set can be the entire manifold.We will demonstrate by examples that these results are optimal. 
    more » « less
  3. In this paper, we generalize topological results known for noncompact manifolds with nonnegative Ricci curvature to spaces with nonnegative N N -Bakry Émery Ricci curvature. We study the Splitting Theorem and a property called the geodesic loops to infinity property in relation to spaces with nonnegative N N -Bakry Émery Ricci curvature. In addition, we show that if M n M^n is a complete, noncompact Riemannian manifold with nonnegative N N -Bakry Émery Ricci curvature where N > n N>n , then H n − 1 ( M , Z ) H_{n-1}(M,\mathbb {Z}) is 0 0 . 
    more » « less
  4. We study the rigidity problems for open (complete and noncompact) $$n$$-manifolds with nonnegative Ricci curvature. We prove that if an asymptotic cone of $$M$$ properly contains a Euclidean $$\mathbb{R}^{k-1}$$, then the first Betti number of $$M$$ is at most $n-k$; moreover, if equality holds, then $$M$$ is flat. Next, we study the geometry of the orbit $$\Gamma\tilde{p}$$, where $$\Gamma=\pi_1(M,p)$$ acts on the universal cover $$(\widetilde{M},\tilde{p})$$. Under a similar asymptotic condition, we prove a geometric rigidity in terms of the growth order of $$\Gamma\tilde{p}$$. We also give the first example of a manifold $$M$$ of $$\mathrm{Ric}>0$$ and $$\pi_1(M)=\mathbb{Z}$$ but with a varying orbit growth order. 
    more » « less
  5. Abstract For $$V\sim \alpha \log \log T$$ with $$0<\alpha <2$$, we prove $$\begin{align*} & \frac{1}{T}\textrm{meas}\{t\in [T,2T]: \log|\zeta(1/2+ \textrm{i} t)|>V\}\ll \frac{1}{\sqrt{\log\log T}} e^{-V^{2}/\log\log T}. \end{align*}$$This improves prior results of Soundararajan and of Harper on the large deviations of Selberg’s Central Limit Theorem in that range, without the use of the Riemann hypothesis. The result implies the sharp upper bound for the fractional moments of the Riemann zeta function proved by Heap, Radziwiłł, and Soundararajan. It also shows a new upper bound for the maximum of the zeta function on short intervals of length $$(\log T)^{\theta }$$, $$0<\theta <3$$, that is expected to be sharp for $$\theta> 0$$. Finally, it yields a sharp upper bound (to order one) for the moments on short intervals, below and above the freezing transition. The proof is an adaptation of the recursive scheme introduced by Bourgade, Radziwiłł, and one of the authors to prove fine asymptotics for the maximum on intervals of length $$1$$. 
    more » « less