skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Death of Vulcan: NEID Reveals That the Planet Candidate Orbiting HD 26965 Is Stellar Activity*
Abstract We revisit the long-studied radial velocity (RV) target HD 26965 using recent observations from the NASA-NSF “NEID” precision Doppler facility. Leveraging a suite of classical activity indicators, combined with line-by-line RV analyses, we demonstrate that the claimed 45-day signal previously identified as a planet candidate is most likely an activity-induced signal. Correlating the bulk (spectrally averaged) RV with canonical line activity indicators confirms a multiday “lag” between the observed activity indicator time series and the measured RV. When accounting for this lag, we show that much of the observed RV signal can be removed by a linear detrending of the data. Investigating activity at the line-by-line level, we find a depth-dependent correlation between individual line RVs and the bulk RVs, further indicative of periodic suppression of convective blueshift causing the observed RV variability, rather than an orbiting planet. We conclude that the combined evidence of the activity correlations and depth dependence is consistent with an RV signature dominated by a rotationally modulated activity signal at a period of ∼42 days. We hypothesize that this activity signature is due to a combination of spots and convective blueshift suppression. The tools applied in our analysis are broadly applicable to other stars and could help paint a more comprehensive picture of the manifestations of stellar activity in future Doppler RV surveys.  more » « less
Award ID(s):
2204701
PAR ID:
10542028
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
https://iopscience.iop.org/article/10.3847/1538-3881/ad34d5/meta
Date Published:
Journal Name:
The Astronomical Journal
Volume:
167
Issue:
5
ISSN:
0004-6256
Page Range / eLocation ID:
243
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Barnard’s star is among the most studied stars given its proximity to the Sun. It is often considered the radial velocity (RV) standard for fully convective stars due to its RV stability and equatorial decl. Recently, an M sin i = 3.3 M ⊕ super-Earth planet candidate with a 233 day orbital period was announced by Ribas et al. New observations from the near-infrared Habitable-zone Planet Finder (HPF) Doppler spectrometer do not show this planetary signal. We ran a suite of experiments on both the original data and a combined original + HPF data set. These experiments include model comparisons, periodogram analyses, and sampling sensitivity, all of which show the signal at the proposed period of 233 days is transitory in nature. The power in the signal is largely contained within 211 RVs that were taken within a 1000 day span of observing. Our preferred model of the system is one that features stellar activity without a planet. We propose that the candidate planetary signal is an alias of the 145 day rotation period. This result highlights the challenge of analyzing long-term, quasi-periodic activity signals over multiyear and multi-instrument observing campaigns. 
    more » « less
  2. Abstract The discovery and characterization of extrasolar planets using radial velocity (RV) measurements is limited by noise sources from the surfaces of host stars. Current techniques to suppress stellar magnetic activity rely on decorrelation using an activity indicator (e.g., strength of the Ca ii lines, width of the cross-correlation function, broadband photometry) or measurement of the RVs using only a subset of spectral lines that have been shown to be insensitive to activity. Here, we combine the above techniques by constructing a high-signal-to-noise activity indicator, the depth metric  ( t ) , from the most activity-sensitive spectral lines using the “line-by-line” method of Dumusque (2018). Analogous to photometric decorrelation of RVs or Gaussian progress regression modeling of activity indices, time series modeling of  ( t ) reduces the amplitude of magnetic activity in RV measurements; in an α CenB RV time series from HARPS, the RV rms was reduced from 2.67 to 1.02 m s −1 .  ( t ) modeling enabled us to characterize injected planetary signals as small as 1 m s −1 . In terms of noise reduction and injected signal recovery,  ( t ) modeling outperforms activity mitigation via the selection of activity-insensitive spectral lines. For Sun-like stars with activity signals on the m s −1 level, the depth metric independently tracks rotationally modulated and multiyear stellar activity with a level of quality similar to that of the FWHM of the CCF and log R HK ′ . The depth metric and its elaborations will be a powerful tool in the mitigation of stellar magnetic activity, particularly as a means of connecting stellar activity to physical processes within host stars. 
    more » « less
  3. We present the discovery of an Earth-mass planet (Mbsini= 1.26 ± 0.21M) on a 15.6 d orbit of a relatively nearby (d ~9.6 pc) and low-mass (0.167 ± 0.011M) M5.0 V star, Wolf 1069. Sitting at a separation of 0.0672 ± 0.0014 au away from the host star puts Wolf 1069 b in the habitable zone (HZ), receiving an incident flux ofS= 0.652 ± 0.029S. The planetary signal was detected using telluric-corrected radial-velocity (RV) data from the CARMENES spectrograph, amounting to a total of 262 spectroscopic observations covering almost four years. There are additional long-period signals in the RVs, one of which we attribute to the stellar rotation period. This is possible thanks to our photometric analysis including new, well-sampled monitoring campaigns undergone with the OSN and TJO facilities that supplement archival photometry (i.e., from MEarth and SuperWASP), and this yielded an updated rotational period range ofProt= 150–170 d, with a likely value at 169.3−3.6+3.7. The stellar activity indicators provided by the CARMENES spectra likewise demonstrate evidence for the slow rotation period, though not as accurately due to possible factors such as signal aliasing or spot evolution. Our detectability limits indicate that additional planets more massive than one Earth mass with orbital periods of less than 10 days can be ruled out, suggesting that perhaps Wolf 1069 b had a violent formation history. This planet is also the sixth closest Earth-mass planet situated in the conservative HZ, after Proxima Centauri b, GJ 1061 d, Teegarden’s Star c, and GJ 1002 b and c. Despite not transiting, Wolf 1069 b is nonetheless a very promising target for future three-dimensional climate models to investigate various habitability cases as well as for sub-m s−1RV campaigns to search for potential inner sub-Earth-mass planets in order to test planet formation theories. 
    more » « less
  4. Abstract The distortions of absorption line profiles caused by photospheric brightness variations on the surfaces of cool, main-sequence stars can mimic or overwhelm radial velocity (RV) shifts due to the presence of exoplanets. The latest generation of precision RV spectrographs aims to detect velocity amplitudes ≲ 10 cm s −1 , but requires mitigation of stellar signals. Statistical techniques are being developed to differentiate between Keplerian and activity-related velocity perturbations. Two important challenges, however, are the interpretability of the stellar activity component as RV models become more sophisticated, and ensuring the lowest-amplitude Keplerian signatures are not inadvertently accounted for in flexible models of stellar activity. For the K2V exoplanet host ϵ Eridani, we separately used ground-based photometry to constrain Gaussian processes for modeling RVs and TESS photometry with a light-curve inversion algorithm to reconstruct the stellar surface. From the reconstructions of TESS photometry, we produced an activity model that reduced the rms scatter in RVs obtained with EXPRES from 4.72 to 1.98 m s −1 . We present a pilot study using the CHARA Array and MIRC-X beam combiner to directly image the starspots seen in the TESS photometry. With the limited phase coverage, our spot detections are marginal with current data but a future dedicated observing campaign should allow for imaging, as well as allow the stellar inclination and orientation with respect to the debris disk to be definitively determined. This work shows that stellar surface maps obtained with high-cadence, time-series photometric and interferometric data can provide the constraints needed to accurately reduce RV scatter. 
    more » « less
  5. Abstract Measured spectral shifts due to intrinsic stellar variability (e.g., pulsations, granulation) and activity (e.g., spots, plages) are the largest source of error for extreme-precision radial-velocity (EPRV) exoplanet detection. Several methods are designed to disentangle stellar signals from true center-of-mass shifts due to planets. The Extreme-precision Spectrograph (EXPRES) Stellar Signals Project (ESSP) presents a self-consistent comparison of 22 different methods tested on the same extreme-precision spectroscopic data from EXPRES. Methods derived new activity indicators, constructed models for mapping an indicator to the needed radial-velocity (RV) correction, or separated out shape- and shift-driven RV components. Since no ground truth is known when using real data, relative method performance is assessed using the total and nightly scatter of returned RVs and agreement between the results of different methods. Nearly all submitted methods return a lower RV rms than classic linear decorrelation, but no method is yet consistently reducing the RV rms to sub-meter-per-second levels. There is a concerning lack of agreement between the RVs returned by different methods. These results suggest that continued progress in this field necessitates increased interpretability of methods, high-cadence data to capture stellar signals at all timescales, and continued tests like the ESSP using consistent data sets with more advanced metrics for method performance. Future comparisons should make use of various well-characterized data sets—such as solar data or data with known injected planetary and/or stellar signals—to better understand method performance and whether planetary signals are preserved. 
    more » « less