skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Cloud Watching: Understanding Attacks Against Cloud-Hosted Services
Award ID(s):
2120400
PAR ID:
10542088
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400703829
Page Range / eLocation ID:
313 to 327
Format(s):
Medium: X
Location:
Montreal QC Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. The paradigm shift of deploying applications to the cloud has introduced both opportunities and challenges. Although clouds use elasticity to scale resource usage at runtime to help meet an application’s performance requirements, developers are still challenged by unpredictable performance, little control of execution environment, and differences among cloud service providers, all while being charged for their cloud usages. Application performance stability is particularly affected by multi-tenancy in which the hardware is shared among varying applications and virtual machines. Developers porting their applications need to meet performance requirements, but testing on the cloud under the effects of performance uncertainty is difficult and expensive, due to high cloud usage costs. This paper presents a first approach to testing an application with typical inputs for how its performance will be affected by performance uncertainty, without incurring undue costs of bruteforce testing in the cloud. We specify cloud uncertainty testing criteria, design a test-based strategy to characterize the blackbox cloud’s performance distributions using these testing criteria, and support execution of tests to characterize the resource usage and cloud baseline performance of the application to be deployed. Importantly, we developed a smart test oracle that estimates the application’s performance with certain confidence levels using the above characterization test results and determines whether it will meet its performance requirements. We evaluated our testing approach on both the Chameleon cloud and Amazon web services; results indicate that this testing strategy shows promise as a cost-effective approach to test for performance effects of cloud uncertainty when porting an application to the cloud. 
    more » « less
  2. ABSTRACT

    We study the physical drivers of slow molecular cloud mergers within a simulation of a Milky Way-like galaxy in the moving-mesh code arepo, and determine the influence of these mergers on the mass distribution and star formation efficiency of the galactic cloud population. We find that 83 per cent of these mergers occur at a relative velocity below 5 km s−1, and are associated with large-scale atomic gas flows, driven primarily by expanding bubbles of hot, ionized gas caused by supernova explosions and galactic rotation. The major effect of these mergers is to aggregate molecular mass into higher-mass clouds: mergers account for over 50 per cent of the molecular mass contained in clouds of mass M > 2 × 106 M⊙. These high-mass clouds have higher densities, internal velocity dispersions and instantaneous star formation efficiencies than their unmerged, lower mass precursors. As such, the mean instantaneous star formation efficiency in our simulated galaxy, with its merger rate of just 1 per cent of clouds per Myr, is 25 per cent higher than in a similar population of clouds containing no mergers.

     
    more » « less