Abstract Recent in situ observations show that haze particles exist in a convection cloud chamber. The microphysics schemes previously used for large‐eddy simulations of the cloud chamber could not fully resolve haze particles and the associated processes, including their activation and deactivation. Specifically, cloud droplet activation was modeled based on Twomey‐type parameterizations, wherein cloud droplets were formed when a critical supersaturation for the available cloud condensation nuclei (CCN) was exceeded and haze particles were not explicitly resolved. Here, we develop and adapt haze‐capable bin and Lagrangian microphysics schemes to properly resolve the activation and deactivation processes. Results are compared with the Twomey‐type CCN‐based bin microphysics scheme in which haze particles are not fully resolved. We find that results from the haze‐capable bin microphysics scheme agree well with those from the Lagrangian microphysics scheme. However, both schemes significantly differ from those from a CCN‐based bin microphysics scheme unless CCN recycling is considered. Haze particles from the recycling of deactivated cloud droplets can strongly enhance cloud droplet number concentration due to a positive feedback in haze‐cloud interactions in the cloud chamber. Haze particle size distributions are more realistic when considering solute and curvature effects that enable representing the complete physics of the activation process. Our study suggests that haze particles and their interactions with cloud droplets may have a strong impact on cloud properties when supersaturation fluctuations are comparable to mean supersaturation, as is the case in the cloud chamber and likely is the case in the atmosphere, especially in polluted conditions.
more »
« less
This content will become publicly available on January 1, 2026
Microphysics regimes due to haze–cloud interactions: cloud oscillation and cloud collapse
Abstract. It is known that aqueous haze particles can be activated into cloud droplets in a supersaturated environment. However, haze–cloud interactions have not been fully explored, partly because haze particles are not represented in most cloud-resolving models. Here, we conduct a series of large-eddy simulations (LESs) of a cloud in a convection chamber using a haze-capable Eulerian-based bin microphysics scheme to explore haze–cloud interactions over a wide range of aerosol injection rates. Results show that the cloud is in a slow microphysics regime at low aerosol injection rates, where the cloud responds slowly to an environmental change and droplet deactivation is negligible. The cloud is in a fast microphysics regime at moderate aerosol injection rates, where the cloud responds quickly to an environmental change and haze–cloud interactions are important. More interestingly, two more microphysics regimes are observed at high aerosol injection rates due to haze–cloud interactions. Cloud oscillation is driven by the oscillation of the mean supersaturation around the critical supersaturation of aerosol due to haze–cloud interactions. Cloud collapse happens under weaker forcing of supersaturation where the chamber transfers cloud droplets to haze particles efficiently, leading to a significant decrease (collapse) in cloud droplet number concentration. One special case of cloud collapse is the haze-only regime. It occurs at extremely high aerosol injection rates, where droplet activation is inhibited, and the sedimentation of haze particles is balanced by the aerosol injection rate. Our results suggest that haze particles and their interactions with cloud droplets should be considered, especially in polluted conditions.
more »
« less
- Award ID(s):
- 2133229
- PAR ID:
- 10625542
- Publisher / Repository:
- Copernicus Publications on behalf of the European Geosciences Union
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 25
- Issue:
- 6
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 3785 to 3806
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Collisional growth of cloud droplets is an essential yet uncertain process for drizzle and precipitation formation. To improve the quantitative understanding of this key component of cloud‐aerosol‐turbulence interactions, observational studies of collision‐coalescence in a controlled laboratory environment are needed. In an existing convection‐cloud chamber (the Pi Chamber), collisional growth is limited by low liquid water content and short droplet residence times. In this work, we use numerical simulations to explore various configurations of a convection‐cloud chamber that may intensify collision‐coalescence. We employ a large‐eddy simulation (LES) model with a size‐resolved (bin) cloud microphysics scheme to explore how cloud properties and the intensity of collision‐coalescence are affected by the chamber size and aspect ratio, surface roughness, side‐wall wetness, side‐wall temperature arrangement, and aerosol injection rate. Simulations without condensation and evaporation within the domain are first performed to explore the turbulence dynamics and wall fluxes. The LES wall fluxes are used to modify the Scalar Flux‐budget Model, which is then applied to demonstrate the need for non‐uniform side‐wall temperature (two side walls as warm as the bottom and the two others as cold as the top) to maintain high supersaturation in a tall chamber. The results of LES with full cloud microphysics reveal that collision‐coalescence is greatly enhanced by employing a taller chamber with saturated side walls, non‐uniform side‐wall temperature, and rough surfaces. For the conditions explored, although lowering the aerosol injection rate broadens the droplet size distribution, favoring collision‐coalescence, the reduced droplet number concentration decreases the frequency of collisions.more » « less
-
Abstract The Pi Cloud Chamber offers a unique opportunity to study aerosol‐cloud microphysics interactions in a steady‐state, turbulent environment. In this work, an atmospheric large‐eddy simulation (LES) model with spectral bin microphysics is scaled down to simulate these interactions, allowing comparison with experimental results. A simple scalar flux budget model is developed and used to explore the effect of sidewalls on the bulk mixing temperature, water vapor mixing ratio, and supersaturation. The scaled simulation and the simple scalar flux budget model produce comparable bulk mixing scalar values. The LES dynamics results are compared with particle image velocimetry measurements of turbulent kinetic energy, energy dissipation rates, and large‐scale oscillation frequencies from the cloud chamber. These simulated results match quantitatively to experimental results. Finally, with the bin microphysics included the LES is able to simulate steady‐state cloud conditions and broadening of the cloud droplet size distributions with decreasing droplet number concentration, as observed in the experiments. The results further suggest that collision‐coalescence does not contribute significantly to this broadening. This opens a path for further detailed intercomparison of laboratory and simulation results for model validation and exploration of specific physical processes.more » « less
-
Abstract This study presents the first model intercomparison of aerosol‐cloud‐turbulence interactions in a controlled cloudy Rayleigh‐Bénard Convection chamber environment, utilizing the Pi Chamber at Michigan Technological University. We analyzed simulated cloud chamber‐averaged statistics of microphysics and thermodynamics in a warm‐phase, cloudy environment under steady‐state conditions at varying aerosol injection rates. Simulation results from seven distinct models (DNS, LES, and a 1D turbulence model) were compared. Our findings demonstrate that while all models qualitatively capture observed trends in droplet number concentration, mean radius, and droplet size distributions at both high and low aerosol injection rates, significant quantitative differences were observed. Notably, droplet number concentrations varied by over two orders of magnitude between models for the same injection rates, indicating sensitivities to the model treatments in droplet activation and removal and wall fluxes. Furthermore, inconsistencies in vertical relative humidity profiles and in achieving steady‐state liquid water content suggest the need for further investigation into the mechanisms driving these variations. Despite these discrepancies, the models generally reproduced consistent power‐law relationships between the microphysical variables. This model intercomparison underscores the importance of controlled cloud chamber experiments for validating and improving cloud microphysical parameterizations. Recommendations for future modeling studies are also highlighted, including constraining wall conditions and processes, investigating droplet/aerosol removal (including sidewall losses), and conducting simplified experiments to isolate specific processes contributing to model divergence and reduce model uncertainties.more » « less
-
Aerosol indirect effects are one of the leading contributors to cloud radiative properties relevant to climate. Aerosol particles become cloud droplets when the ambient relative humidity (saturation ratio) exceeds a critical value, which depends on the particle size and chemical composition. In the traditional formulation of this problem, only average, uniform saturation ratios are considered. Using experiments and theory, we examine the effects of fluctuations, produced by turbulence. Our measurements, from a multiphase, turbulent cloud chamber, show a clear transition from a regime in which the mean saturation ratio dominates to one in which the fluctuations determine cloud properties. The laboratory measurements demonstrate cloud formation in mean-subsaturated conditions (i.e., relative humidity <100%) in the fluctuation-dominant activation regime. The theoretical framework developed to interpret these measurements predicts a transition from a mean- to a fluctuation-dominated regime, based on the relative values of the mean and standard deviation of the environmental saturation ratio and the critical saturation ratio at which aerosol particles activate or become droplets. The theory is similar to the concept of stochastic condensation and can be used in the context of the atmosphere to explore the conditions under which droplet activation is driven by fluctuations as opposed to mean supersaturation. It provides a basis for future development of cloud droplet activation parameterizations that go beyond the internally homogeneous parcel calculations that have been used in the past.more » « less
An official website of the United States government
