Opportunistic Physics-mining Transfer Mapping Architecture (OPTMA) is a hybrid architecture that combines fast simplified physics models with neural networks in order to provide significantly improved generalizability and explainability compared to pure data-driven machine learning (ML) models. However, training OPTMA remains computationally inefficient due to its dependence on gradient-free solvers or back-propagation with supervised learning over expensively pre-generated labels. This paper presents two extensions of OPTMA that are not only more efficient to train through standard back-propagation but are readily deployable through the state-of-the-art library, PyTorch. The first extension, OPTMA-Net, presents novel manual reprogramming of the simplified physics model, expressing it in Torch tensor compatible form, thus naturally enabling PyTorch's in-built Auto-Differentiation to be used for training. Since manual reprogramming can be tedious for some physics models, a second extension called OPTMA-Dual is presented, where a highly accurate internal neural net is trained apriori on the fast simplified physics model (which can be generously sampled), and integrated with the transfer model. Both new architectures are tested on analytical test problems and the problem of predicting the acoustic field of an unmanned aerial vehicle. The interference of the acoustic pressure waves produced by multiple monopoles form the basis of the simplified physics for this problem statement. An indoor noise monitoring setup in motion capture environment provided the ground truth for target data. Compared to sequential hybrid and pure ML models, OPTMA-Net/Dual demonstrate several fold improvement in performing extrapolation, while providing orders of magnitude faster training times compared to the original OPTMA.
more »
« less
Novel Physics-Based Machine-Learning Models for Indoor Air Quality Approximations
Cost-effective sensors are capable of real-time capturing a variety of air quality-related modalities from different pollutant concentrations to indoor/outdoor humidity and temperature. Machine learning (ML) models are capable of performing air-quality "ahead-of-time" approximations. Undoubtedly, accurate indoor air quality approximation significantly helps provide a healthy indoor environment, optimize associated energy consumption, and offer human comfort. However, it is crucial to design an ML architecture to capture the domain knowledge, so-called problem physics. In this study, we propose six novel physics-based ML models for accurate indoor pollutant concentration approximations. The proposed models include an adroit combination of state-space concepts in physics, Gated Recurrent Units, and Decomposition techniques. The proposed models were illustrated using data collected from five offices in a commercial building in California. The proposed models are shown to be less complex, computationally more efficient, and more accurate than similar state-of-the-art transformer-based models. The superiority of the proposed models is due to their relatively light architecture (computational efficiency) and, more importantly, their ability to capture the underlying highly nonlinear patterns embedded in the often contaminated sensor-collected indoor air quality temporal data.
more »
« less
- Award ID(s):
- 1922666
- PAR ID:
- 10542100
- Publisher / Repository:
- https://doi.org/10.48550/arXiv.2308.01438
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Accurate air pollution monitoring is critical to understand and mitigate the impacts of air pollution on human health and ecosystems. Due to the limited number and geographical coverage of advanced, highly accurate sensors monitoring air pollutants, many low-cost and low-accuracy sensors have been deployed. Calibrating low-cost sensors is essential to fill the geographical gap in sensor coverage. We systematically examined how different machine learning (ML) models and open-source packages could help improve the accuracy of particulate matter (PM) 2.5 data collected by Purple Air sensors. Eleven ML models and five packages were examined. This systematic study found that both models and packages impacted accuracy, while the random training/testing split ratio (e.g., 80/20 vs. 70/30) had minimal impact (0.745% difference for R2). Long Short-Term Memory (LSTM) models trained in RStudio and TensorFlow excelled, with high R2 scores of 0.856 and 0.857 and low Root Mean Squared Errors (RMSEs) of 4.25 µg/m3 and 4.26 µg/m3, respectively. However, LSTM models may be too slow (1.5 h) or computation-intensive for applications with fast response requirements. Tree-boosted models including XGBoost (0.7612, 5.377 µg/m3) in RStudio and Random Forest (RF) (0.7632, 5.366 µg/m3) in TensorFlow offered good performance with shorter training times (<1 min) and may be suitable for such applications. These findings suggest that AI/ML models, particularly LSTM models, can effectively calibrate low-cost sensors to produce precise, localized air quality data. This research is among the most comprehensive studies on AI/ML for air pollutant calibration. We also discussed limitations, applicability to other sensors, and the explanations for good model performances. This research can be adapted to enhance air quality monitoring for public health risk assessments, support broader environmental health initiatives, and inform policy decisions.more » « less
-
— In this paper, we first develop a low-cost surfacebased air pollutants measurement system for the real-time air pollution monitoring and forecasting applications. Then, we compare the performance achieved by the proposed system in real-time urban environment with currently used static monitoring stations by the governmental environmental protection agency (EPA). The proposed design uses particulate matter, humidity, and temperature sensors to measure the values of the air pollutant that determines the value of the Air Quality Index (AQI). The SD storage device is interfaced with the system to store the large amount of data sensed by the system. The Arduino UNO-based processing unit integrates with the sensing units to process and control the sensed air pollutants data. The proposed system is deployed in indoors and outdoor environment in under served minority communities in big cities to illustrate real-time environmental pollution measurement and monitoring applications. The system can measure, monitor and alert the level of PM2.5 and PM10 components of the AQI as they are often the main pollutant that determines the AQI value. The performance of the proposed system compares with the expensive data logger-based EPA-approved LDEQ sensorsbased air quality monitoring system. Our analysis shows that the measurement and monitoring performance of the proposed system is comparable with the EPA-approved LDEQ sensorsbased air quality monitoring system. The analysis also shows that there is a spatial and temporal variation of PM2.5 and PM10 values even for sites that are less than a mile apart. The interaction interphase of the system is simpler and easier to use as compared with bulky display systems in traditional EPA-based monitoring systems. In contrast with the traditional data logger-based system, the proposed system is smaller and quicker to deploy to test specific air pollutants in interested urban and rural locations .more » « less
-
Indoor localization is a challenging task. Compared to outdoor environments where GPS is dominant, there is no robust and almost-universal approach. Recently, machine learning (ML) has emerged as the most promising approach for achieving accurate indoor localization. Nevertheless, its main challenge is requiring large datasets to train the neural networks. The data collection procedure is costly and laborious, requiring extensive measurements and labeling processes for different indoor environments. The situation can be improved by Data Augmentation (DA), a general framework to enlarge the datasets for ML, making ML systems more robust and increasing their generalization capabilities. This paper proposes two simple yet surprisingly effective DA algorithms for channel state information (CSI) based indoor localization motivated by physical considerations. We show that the number of measurements for a given accuracy requirement may be decreased by an order of magnitude. Specifically, we demonstrate the algorithms’ effectiveness by experiments conducted with a measured indoor WiFi measurement dataset: As little as 10% of the original dataset size is enough to get the same performance as the original dataset. We also showed that if we further augment the dataset with the proposed techniques, test accuracy is improved more than three-fold.more » « less
-
Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)High accuracy localization and user positioning tracking is critical in improving the quality of augmented reality environments. The biggest challenge facing developers is localizing the user based on visible surroundings. Current solutions rely on the Global Positioning System (GPS) for tracking and orientation. However, GPS receivers have an accuracy of about 10 to 30 meters, which is not accurate enough for augmented reality, which needs precision measured in millimeters or smaller. This paper describes the development and demonstration of a head-worn augmented reality (AR) based vision-aid indoor navigation system, which localizes the user without relying on a GPS signal. Commercially available augmented reality head-set allows individuals to capture the field of vision using the front-facing camera in a real-time manner. Utilizing captured image features as navigation-related landmarks allow localizing the user in the absence of a GPS signal. The proposed method involves three steps: a detailed front-scene camera data is collected and generated for landmark recognition; detecting and locating an individual’s current position using feature matching, and display arrows to indicate areas that require more data collects if needed. Computer simulations indicate that the proposed augmented reality-based vision-aid indoor navigation system can provide precise simultaneous localization and mapping in a GPS-denied environment. Keywords: Augmented-reality, navigation, GPS, HoloLens, vision, positioning system, localizationmore » « less
An official website of the United States government

