skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical Assessment of Indoor Air Quality in Spaces in the United States Designed with the ASHRAE 62.1–2019 Natural Ventilation Procedure
Natural ventilation is used to cool buildings and cut energy costs by inducing airflow through building openings without the use of mechanical ventilation and cooling systems. However, prior research has documented increased introduction of particles into indoor environments that are naturally ventilated, with associated health consequences. The recently updated ASHRAE Standard 62.1–2019: Ventilation for Acceptable Indoor Air Quality Natural Ventilation Procedure (NVP) prescribes opening sizes as a function of occupant density and geometry for use as a ventilation strategy, a change from the previous standard. The current work quantifies the indoor air quality impacts of implementing the Standard 62.1–2019 Natural Ventilation Procedure in the United States and compares it to the 62.1-specified ventilation rate procedure. This is done via coupled transient simulation of CONTAM 3.4 and EnergyPlus 9.1. Three pollutant classes were identified to represent a broad range of contaminants: outdoor-generated pollutants, pollutants generated indoors by humans, and pollutants generated indoors by the building itself. With boundary conditions from measured weather and outdoor pollutant data for 13 representative locations throughout the U.S., our modeling first found 41%–185% annual average increase in ventilation rates over its mechanical counterpart if the NVP is used across the geometries and occupant densities in the Standard. Due to elevated ventilation rates, the Natural Ventilation Procedure reduced building-generated and occupant-generated contaminant concentrations during occupied hours by an average of 17%–61% compared to the ventilation rate procedure. Outdoor-generated fine particles averaged 2.1–2.5 times the concentrations indoors when using the NVP as compared to mechanical ventilation with a MERV-8 filter and 7.8–10.4 times the concentration of a mechanical system with a MERV-13 filter. Both ventilation rates and concentrations were substantially climate-specific and somewhat window geometry-specific. We further showed that increased filtration is needed in many cases to keep up with increased effective NVP rates in the 2019 Standard if acceptable levels of indoor particles are to be achieved, and we offer suggestions for improving the Standard.  more » « less
Award ID(s):
1922666
PAR ID:
10542145
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Building and Environment
Volume:
243
ISSN:
0360-1323
Page Range / eLocation ID:
110671
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sahar Zahiri (Ed.)
    Sub-micron particles are ubiquitous in the indoor environment, especially during wildfire smoke episodes, and have a higher impact on human health than larger particles. Conventional fibrous air filters installed in heating, ventilation, and air conditioning (HVAC) systems play an important role in controlling indoor air quality by removing various air pollutants, including particulate matter (PM). However, it is evident that the removal efficiency of wildfire smoke PM and its effect on filter performance is significantly under-studied. This study delves into the size-specific removal efficiency of pine needle smoke, a representative of wildfire smoke and emissions. We test an array of filter media with minimum efficiency reporting values (MERV) spanning 11–15. Both size-resolved particle number concentrations and mass concentrations were measured using an Optical Particle Sizer (OPS, TSI, Inc.) and a Scanning Mobility Particle Sizer (SMPS, TSI, Inc.). Furthermore, we characterize the filter media morphology and smoke particles deposited on filter fibers using Scanning Electron Microscopy (SEM) to gain insights into the interaction dynamics of these particles. Our findings add to the comprehension of the relationship between MERV designations and smoke removal efficiency. Such insight can inform standards and guidelines and equip decision-makers with the knowledge needed to initiate measures for mitigating the impact of air pollution, specifically on the indoor environment. 
    more » « less
  2. Indoor air quality (IAQ) is crucial for the health, well-being, and productivity of office occupants. IAQ is strongly influenced by occupancy and the operational mode of the heating, ventilation, and air conditioning (HVAC) system. This study investigates the spatiotemporal variations in ozone (O3) and carbon dioxide (CO2) concentrations throughout the HVAC system of a LEED-certified office building. A four-month field measurement campaign was conducted at the Ray W. Herrick Laboratories, employing an automated multi-point sampling system to monitor O3 and CO2 at eight locations throughout the HVAC system. The objectives of this study are to characterize the spatiotemporal distribution of these gases under different ventilation modes and occupancy levels, and to identify O3 loss mechanisms in the office and its HVAC system. Spatiotemporal variations in O3 and CO2 concentrations were observed throughout the HVAC system. Results indicate that outdoor air exchange rates (AERs) significantly impact indoor O3 levels, with higher AERs resulting in increased indoor O3 but reduced CO2 concentrations. Measurements reveal that HVAC filters and ducts contribute to O3 loss, with up to 18% O3 removal observed in the longest HVAC duct segment. Additionally, occupancy influences O3 deposition onto human skin and clothing surfaces. This research underscores the limitations of ventilation standards that focus only on CO2, highlighting the need for ventilation strategies that consider the effects of occupancy and outdoor AERs on different gases. By integrating multi-point gas sampling into building automation systems, more effective control strategies can be developed to enhance IAQ and occupant health while reducing energy consumption. 
    more » « less
  3. Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange. 
    more » « less
  4. Surface cleaning using commercial disinfectants, which has recently increased during the coronavirus disease 2019 pandemic, can generate secondary indoor pollutants both in gas and aerosol phases. It can also affect indoor air quality and health, especially for workers repeatedly exposed to disinfectants. Here, we cleaned the floor of a mechanically ventilated office room using a commercial cleaner while concurrently measuring gas-phase precursors, oxidants, radicals, secondary oxidation products, and aerosols in real time; these were detected within minutes after cleaner application. During cleaning, indoor monoterpene concentrations exceeded outdoor concentrations by two orders of magnitude, increasing the rate of ozonolysis under low (<10 ppb) ozone levels. High number concentrations of freshly nucleated sub–10-nm particles (≥105 cm−3) resulted in respiratory tract deposited dose rates comparable to or exceeding that of inhalation of vehicle-associated aerosols. 
    more » « less
  5. Good indoor air quality in office environments is essential for occupant health and productivity. In open-plan offices, displacement ventilation has been recognized for its higher efficiency compared to mixing ventilation. This study evaluates the performance of displacement ventilation in an open-plan office under cooling and heating conditions, considering various supply ventilation rates, supply air temperatures, and occupancy levels. Field measurements were conducted over three months in a living laboratory office in a high-performance building. The indoor environment was controlled by an independent variable air volume (VAV) air conditioning system. The supply ventilation rate ranged from 6 to 12 h^−1. Real-time measurements of carbon dioxide (CO2) concentrations in the supply air, return air, and breathing zone of the office were conducted to assess occupants’ exposure to CO2 and ventilation efficiency. The results show that the supply ventilation rate plays an important role in shaping the air distribution and overall effectiveness of the mechanical ventilation system. Higher supply ventilation rates can enhance air distribution robustness, improving ventilation efficiency and reducing CO2 exposure under both cooling and heating conditions. These findings also suggest the need for an optimized control logic that differs from the conventional control logic used in VAV systems. Specifically, during the heating condition of displacement ventilation, it is recommended to maintain the supply ventilation rate at a higher level to effectively mitigate the impact of occupant behavior on air quality, minimize CO2 exposure risks, and ensure a more robust and reliable indoor air distribution. 
    more » « less