Collaborative data analytics is becoming increasingly important due to the higher complexity of data science, more diverse skills from different disciplines, more common asynchronous schedules of team members, and the global trend of working remotely. In this demo we will show how Texera supports this emerging computing paradigm to achieve high productivity among collaborators with various backgrounds. Based on our active joint projects on the system, we use a scenario of social media analysis to show how a data science task can be conducted on a user friendly yet powerful platform by a multi-disciplinary team including domain scientists with limited coding skills and experienced machine learning experts. We will present how to do collaborative editing of a workflow and collaborative execution of the workflow in Texera. We will focus on data-centric features such as synchronization of operator schemas among the users during the construction phase, and monitoring and controlling the shared runtime during the execution phase. 
                        more » 
                        « less   
                    
                            
                            Texera: A System for Collaborative and Interactive Data Analytics Using Workflows
                        
                    
    
            Domain experts play an important role in data science, as their knowledge can unlock valuable insights from data. As they often lack technical skills required to analyze data, they need collaborations with technical experts. In these joint efforts, productive collaborations are critical not only in the phase of constructing a data science task, but more importantly, during the execution of a task. This need stems from the inherent complexity of data science, which often involves user-defined functions or machine-learning operations. Consequently, collaborators want various interactions during runtime, such as pausing/resuming the execution, inspecting an operator's state, and modifying an operator's logic. To achieve the goal, in the past few years we have been developing an open-source system called Texera to support collaborative data analytics using GUI-based workflows as cloud services. In this paper, we present a holistic view of several important design principles we followed in the design and implementation of the system. We focus on different methods of sending messages to running workers, how these methods are adopted to support various runtime interactions from users, and their trade-offs on both performance and consistency. These principles enable Texera to provide powerful user interactions during a workflow execution to facilitate efficient collaborations in data analytics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2107150
- PAR ID:
- 10542165
- Publisher / Repository:
- VLDB
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Dataflow systems have an increasing need to support a wide range of tasks in data-centric applications using latest techniques such as machine learning. These tasks often involve custom functions with complex internal states. Consequently, users need enhanced debugging support to understand runtime behaviors and investigate internal states of dataflows. Traditional forward debuggers allow users to follow the chronological order of operations in an execution. Therefore, a user cannot easily identify a past runtime behavior after an unexpected result is produced. In this paper, we present a novel time-travel debugging paradigm called IcedTea, which supports reverse debugging. In particular, in a dataflow's execution, which is inherently distributed across multiple operators, the user can periodically interact with the job and retrieve the global states of the operators. After the execution, the system allows the user to roll back the dataflow state to any past interactions. The user can use step instructions to repeat the past execution to understand how data was processed in the original execution. We give a full specification of this powerful paradigm, study how to reduce its runtime overhead and develop techniques to support debugging instructions responsively. Our experiments on real-world datasets and workflows show that IcedTea can support responsive time-travel debugging with low time and space overhead.more » « less
- 
            null (Ed.)Mixed-initiative visual analytics systems incorporate well-established design principles that improve users' abilities to solve problems. As these systems consider whether to take initiative towards achieving user goals, many current systems address the potential for cognitive bias in human initiatives statically, relying on fixed initiatives they can take instead of identifying, communicating and addressing the bias as it occurs. We argue that mixed-initiative design principles can and should incorporate cognitive bias mitigation strategies directly through development of mitigation techniques embedded in the system to address cognitive biases in situ. We identify domain experts in machine learning adopting visual analytics techniques and systems that incorporate existing mixed-initiative principles and examine their potential to support bias mitigation strategies. This examination considers the unique perspective these experts bring to visual analytics and is situated in existing user-centered systems that make exemplary use of design principles informed by cognitive theory. We then suggest informed opportunities for domain experts to take initiative toward addressing cognitive biases in light of their existing contributions to the field. Finally, we contribute open questions and research directions for designers seeking to adopt visual analytics techniques that incorporate bias-aware initiatives in future systems.more » « less
- 
            Over the past decade, several urban visual analytics systems and tools have been proposed to tackle a host of challenges faced by cities, in areas as diverse as transportation, weather, and real estate. Many of these tools have been designed through collaborations with urban experts, aiming to distill intricate urban analysis workflows into interactive visualizations and interfaces. However, the design, implementation, and practical use of these tools still rely on siloed approaches, resulting in bespoke systems that are difficult to reproduce and extend. At the design level, these tools undervalue rich data workflows from urban experts, typically treating them only as data providers and evaluators. At the implementation level, they lack interoperability with other technical frameworks. At the practical use level, they tend to be narrowly focused on specific fields, inadvertently creating barriers to cross-domain collaboration. To address these gaps, we present Curio, a framework for collaborative urban visual analytics. Curio uses a dataflow model with multiple abstraction levels (code, grammar, GUI elements) to facilitate collaboration across the design and implementation of visual analytics components. The framework allows experts to intertwine data preprocessing, management, and visualization stages while tracking the provenance of code and visualizations. In collaboration with urban experts, we evaluate Curio through a diverse set of usage scenarios targeting urban accessibility, urban microclimate, and sunlight access. These scenarios use different types of data and domain methodologies to illustrate Curio’s flexibility in tackling pressing societal challenges. Curio is available at urbantk.org/curio.more » « less
- 
            The formation of social groups is defined by the interactions among the group members. Studying this group formation process can be useful in understanding the status of members, decision-making behaviors, spread of knowledge and diseases, and much more. A defining characteristic of these groups is the pecking order or hierarchy the members form which help groups work towards their goals. One area of social science deals with understanding the formation and maintenance of these hierarchies, and in our work we provide social scientists with a visual analytics tool - PeckVis - to aid this process. While online social groups or social networks have been studied deeply and lead to a variety of analyses and visualization tools, the study of smaller groups in the field of social science lacks the support of suitable tools. Domain experts believe that visualizing their data can save them time as well as reveal findings they may have failed to observe. We worked alongside domain experts to build an interactive visual analytics system to investigate social hierarchies. Our system can discover patterns and relationships between the members of a group as well as compare different groups. The results are presented to the user in the form of an interactive visual analytics dashboard. We demonstrate that domain experts were able to effectively use our tool to analyze animal behavior data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    