skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Amortizing Pragmatic Program Synthesis with Rankings
The usage of Rational Speech Acts (RSA) framework has been successful in building pragmatic program synthesizers that return programs which, in addition to being logically consistent with user-generated examples, account for the fact that a user chooses their examples informatively. We present a general method of amortizing the slow, exact RSA synthesizer. Our method first compiles a communication dataset of partially ranked programs by querying the exact RSA synthesizer. It then distills a global ranking -- a single, total ordering of all programs, to approximate the partial rankings from this dataset. This global ranking is then used at inference time to rank multiple logically consistent candidate programs generated from a fast, non-pragmatic synthesizer. Experiments on two program synthesis domains using our ranking method resulted in orders of magnitudes of speed ups compared to the exact RSA synthesizer, while being more accurate than a non-pragmatic synthesizer. Finally, we prove that in the special case of synthesis from a single example, this approximation is exact.  more » « less
Award ID(s):
2123965 2107391
PAR ID:
10542238
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ICML
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hirschfeld, Robert; Pape, Tobias (Ed.)
    Program synthesis promises to help software developers with everyday tasks by generating code snippets automatically from input-output examples and other high-level specifications. The conventional wisdom is that a synthesizer must always satisfy the specification exactly. We conjecture that this all-or-nothing paradigm stands in the way of adopting program synthesis as a developer tool: in practice, the user-written specification often contains errors or is simply too hard for the synthesizer to solve within a reasonable time; in these cases, the user is left with a single over-fitted result or, more often than not, no result at all. In this paper we propose a new program synthesis paradigm we call best-effort program synthesis, where the synthesizer returns a ranked list of partially-valid results, i.e. programs that satisfy some part of the specification. To support this paradigm, we develop best-effort enumeration, a new synthesis algorithm that extends a popular program enumeration technique with the ability to accumulate and return multiple partially-valid results with minimal overhead. We implement this algorithm in a tool called BESTER, and evaluate it on 79 synthesis benchmarks from the literature. Contrary to the conventional wisdom, our evaluation shows that BESTER returns useful results even when the specification is flawed or too hard: i) for all benchmarks with an error in the specification, the top three BESTER results contain the correct solution, and ii) for most hard benchmarks, the top three results contain non-trivial fragments of the correct solution. We also performed an exploratory user study, which confirms our intuition that partially-valid results are useful: the study shows that programmers use the output of the synthesizer for comprehension and often incorporate it into their solutions. 
    more » « less
  2. Example-based specifications for program synthesis are inherently ambiguous and may cause synthesizers to generate programs that do not exhibit intended behavior on unseen inputs. Existing synthesis techniques attempt to address this problem by either placing a domain-specific syntactic bias on the hypothesis space or heavily relying on user feedback to help resolve ambiguity. We present a new framework to address the ambiguity/generalizability problem in example-based synthesis. The key feature of our framework is that it places a semantic bias on the hypothesis space using relational perturbation properties that relate the perturbation/change in a program output to the perturbation/change in a program input. An example of such a property is permutation invariance: the program output does not change when the elements of the program input (array) are permuted. The framework is portable across multiple domains and synthesizers and is based on two core steps: (1) automatically augment the set of user-provided examples by applying relational perturbation properties and (2) use a generic example-based synthesizer to generate a program consistent with the augmented set of examples. Our framework can be instantiated with three different user interfaces, with varying degrees of user engagement to help infer relevant relational perturbation properties. This includes an interface in which the user only provides examples and our framework automatically infers relevant properties. We implement our framework in a tool SKETCHAX specialized to the SKETCH synthesizer and demonstrate that SKETCHAX is effective in significantly boosting the performance of SKETCH for all three user interfaces. 
    more » « less
  3. We present a new domain-agnostic synthesis technique for generating programs from input-output examples. Our method, called metric program synthesis, relaxes the well-known observational equivalence idea (used widely in bottom-up enumerative synthesis) into a weaker notion of observational similarity, with the goal of reducing the search space that the synthesizer needs to explore. Our method clusters programs into equivalence classes based on a distance metric and constructs a version space that compactly represents ""approximately correct"" programs. Then, given a ""close enough"" program sampled from this version space, our approach uses a distance-guided repair algorithm to find a program that exactly matches the given input-output examples. We have implemented our proposed metric program synthesis technique in a tool called SyMetric and evaluate it in three different domains considered in prior work. Our evaluation shows that SyMetric outperforms other domain-agnostic synthesizers that use observational equivalence and that it achieves results competitive with domain-specific synthesizers that are either designed for or trained on those domains. 
    more » « less
  4. We present a new general-purpose synthesis technique for generating programs from input-output examples. Our method, called metric program synthesis, relaxes the observational equivalence idea (used widely in bottom-up enumerative synthesis) into a weaker notion of observational similarity, with the goal of reducing the search space that the synthesizer needs to explore. Our method clusters programs into equivalence classes based on an expert-provided distance metric and constructs a version space that compactly represents “approximately correct” programs. Then, given a “close enough” program sampled from this version space, our approach uses a distance-guided repair algorithm to find a program that exactly matches the given input-output examples. We have implemented our proposed metric program synthesis technique in a tool called SyMetric and evaluate it in three different domains considered in prior work. Our evaluation shows that SyMetric outperforms other domain-agnostic synthesizers that use observational equivalence and that it achieves results competitive with domain-specific synthesizers that are either designed for or trained on those domains. 
    more » « less
  5. This article presents resource-guided synthesis, a technique for synthesizing recursive programs that satisfy both a functional specification and a symbolic resource bound. The technique is type-directed and rests upon a novel type system that combines polymorphic refinement types with potential annotations of automatic amortized resource analysis. The type system enables efficient constraint-based type checking and can express precise refinement-based resource bounds. The proof of type soundness shows that synthesized programs are correct by construction. By tightly integrating program exploration and type checking, the synthesizer can leverage the user-provided resource bound to guide the search, eagerly rejecting incomplete programs that consume too many resources. An implementation in the resource-guided synthesizer ReSyn is used to evaluate the technique on a range of recursive data structure manipulations. The experiments show that ReSyn synthesizes programs that are asymptotically more efficient than those generated by a resource-agnostic synthesizer. Moreover, synthesis with ReSyn is faster than a naive combination of synthesis and resource analysis. ReSyn is also able to generate implementations that have a constant resource consumption for fixed input sizes, which can be used to mitigate side-channel attacks. 
    more » « less