Draft Metagenome-Assembled Genome Sequences of Three Novel Ammonia-Oxidizing Nitrososphaera Strains Recovered from Agricultural Soils in Western Colorado
Microbial nitrification is critical to nitrogen loss from agricultural soils. Here, we report three thaumarchaeotal metagenome-assembled genomes (MAGs) representing a new species ofNitrososphaera. These genomes expand the representation of archaeal nitrifiers recovered from arid, agricultural soils.
more »
« less
- Award ID(s):
- 1912915
- PAR ID:
- 10542242
- Editor(s):
- Newton, Irene_L G
- Publisher / Repository:
- American Society of Microbiology
- Date Published:
- Journal Name:
- Microbiology Resource Announcements
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 2576-098X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Soil degradation is a worldwide problem, causing the declining performance of many plant species. Recently, the application of sediments dredged from aquatic waterways has received attention for their potential as an organic amendment to revive degraded agricultural soils. In Ohio, dredged sediment research has largely focused on the success of corn (Zea mays) or soybean (Glycine max) following the application of dredged sediments from the Toledo Harbor, neglecting the potential for dredged sediments from the other eight harbors and waterways to change plant performance as well as failing to quantify benefits for other commonly grown crops in the region. In a greenhouse experiment, we applied dredged sediments from the Lorain Harbor to degraded agricultural soils across a variety of application ratios and quantified changes in germination, height over the growing season, final biomass, and yield for canola (Brassica napus), tall fescue KY 31 (Festuca arundinacea), and corn to better understand the potential for dredged sediments from this location to increase performance for a variety of regionally important plant species. Overall, plants grown on agricultural soils supplemented with dredged sediments from the Lorain Harbor consistently grew taller, faster, and were larger than the 100% dredged sediment treatments. Furthermore, both corn and tall fescue grown on agricultural soil supplemented with dredged sediments had greater yield compared to their counterparts grown on unamended agricultural soil. In whole, outcomes from this research contribute to a growing body of research that support the use of dredged sediments as a soil amendment for agricultural soils.more » « less
-
Abstract Leafhoppers comprise over 20,000 plant‐sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts,SulciaandNasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal‐level assembly of the aster leafhopper's genome (ALF;Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers,Nephotettix cincticeps,Homalodisca vitripennis, andEmpoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont,Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with bothSulciaand its ancient partner,Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support ofSulciaandNasuiaare only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non‐symbiotic functions are conserved across all species. The high‐quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.more » « less
-
Abstract Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity ofTerriglobia, a common but elusive group within theAcidobacteriotaphylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long‐read Oxford Nanopore MinION sequences in combination with metagenomic short‐read sequences to assemble completeAcidobacteriotagenomes. This allowed us to build multi‐locus phylogenies and annotate pangenome markers to distinguishAcidobacteriotastrains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated withEdaphobacter lichenicola. We conclude that this cluster represents a new genus, which we have namedTunturibacter. We describe four new species:Tunturibacter lichenicolacomb. nov.,Tunturibacter empetritectussp. nov.,Tunturibacter gelidoferenssp. nov., andTunturibacter psychrotoleranssp. nov. By uncovering new species and strains within theTerriglobiaand improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.more » « less
An official website of the United States government

