Abstract Molecular circuits implemented using molecular components tethered to a DNA tile nanostructure have certain advantages over solution-phase circuits. Tethering components in close proximity increases the speed of reactions by reducing diffusion and improves scalability by enabling reuse of identical DNA sequences at different locations in the circuit. These systems show great potential for practical applications including delivery of diagnostic and therapeutic molecular circuits to cells. When modeling such systems, molecular geometry plays an important role in determining whether the two species interact and at what rate. In this paper, we present an automated method for estimating reaction rates in tethered molecular circuits that takes the geometry of the tethered species into account. We probabilistically generate samples of structure distributions based on simple biophysical models and use these to estimate important parameters for kinetic models. This work provides a basis for subsequent enhanced modeling and design tools for localized molecular circuits.
more »
« less
Geometric Enumeration of Localized DNA Strand Displacement Reaction Networks
Localized molecular devices are a powerful tool for engineering complex information-processing circuits and molecular robots. Their practical advantages include speed and scalability of interactions between components tethered near to each other on an underlying nanostructure, and the ability to restrict interactions between more distant components. The latter is a critical feature that must be factored into computational tools for the design and simulation of localized molecular devices: unlike in solution-phase systems, the geometries of molecular interactions must be accounted for when attempting to determine the network of possible reactions in a tethered molecular system. This work aims to address that challenge by integrating, for the first time, automated approaches to analysis of molecular geometry with reaction enumeration algorithms for DNA strand displacement reaction networks that can be applied to tethered molecular systems. By adapting a simple approach to solving the biophysical constraints inherent in molecular interactions to be applicable to tethered systems, we produce a localized reaction enumeration system that enhances previous approaches to reaction enumeration in tethered system by not requiring users to explicitly specify the subsets of components that are capable of interacting. This greatly simplifies the user’s task and could also be used as the basis of future systems for automated placement or routing of signal-transmission and logical processing in molecular devices. We apply this system to several published example systems from the literature, including both tethered molecular logic systems and molecular robots.
more »
« less
- PAR ID:
- 10542531
- Editor(s):
- Seki, Shinnosuke; Stewart, Jaimie Marie
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 314
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-344-7
- Page Range / eLocation ID:
- 314-314
- Subject(s) / Keyword(s):
- Localized circuits reaction enumeration DNA strand displacement geometry molecular computing Computer systems organization → Molecular computing
- Format(s):
- Medium: X Size: 24 pages; 2886711 bytes Other: application/pdf
- Size(s):
- 24 pages 2886711 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Information technologies enable programmers and engineers to design and synthesize systems of startling complexity that nonetheless behave as intended. This mastery of complexity is made possible by a hierarchy of formal abstractions that span from high-level programming languages down to low-level implementation specifications, with rigorous connections between the levels. DNA nanotechnology presents us with a new molecular information technology whose potential has not yet been fully unlocked in this way. Developing an effective hierarchy of abstractions may be critical for increasing the complexity of programmable DNA systems. Here, we build on prior practice to provide a new formalization of ‘domain-level’ representations of DNA strand displacement systems that has a natural connection to nucleic acid biophysics while still being suitable for formal analysis. Enumeration of unimolecular and bimolecular reactions provides a semantics for programmable molecular interactions, with kinetics given by an approximate biophysical model. Reaction condensation provides a tractable simplification of the detailed reactions that respects overall kinetic properties. The applicability and accuracy of the model is evaluated across a wide range of engineered DNA strand displacement systems. Thus, our work can serve as an interface between lower-level DNA models that operate at the nucleotide sequence level, and high-level chemical reaction network models that operate at the level of interactions between abstract species.more » « less
-
Co-localized memory and processing components are necessary for the creation of scalable neuromorphic hardware, and these components can be produced using inexpensive techniques. While memristors have emerged as promising candidates for synaptic emulation, most devices rely on complex fabrication processes that hinder large-scale deployment. This work presents a fully inkjet-printed memristor utilizing hexagonal boron nitride (hBN) and graphene inks, demonstrating a manufacturable approach to neuromorphic systems. The devices exhibit nonvolatile resistive switching with symmetric pinched hysteresis loops [Formula: see text] and tunable conductance states. Furthermore, a piece-wise nonlinear memristor model was developed and implemented in Simscape to enable system-level simulations. A [Formula: see text] reservoir computing architecture, constructed using these memristive devices, successfully demonstrated temporal pattern processing and feature extraction capabilities. The results establish printed memristors as viable building blocks for next-generation edge computing applications, combining the advantages of solution-processable materials with neuromorphic functionality.more » « less
-
Abstract Cyber‐physical systems (CPS) integrate control, sensing, and processing into interconnected physical components to support applications within transportation, energy, healthcare, environment, and various other areas. Secure and reliable wireless communication between devices is necessary to enable the widespread adoption of these emerging technologies. Cyber‐physical systems devices must be protected against active threats, such as Radio Frequency (RF) Jammers, which intentionally disrupt communication links. Jamming detection and mitigation techniques must be evaluated extensively to validate algorithms prior to full implementation. Challenges related to obtaining zoning permits, Federal Aviation Administration (FAA) pilot certification for Unmanned Aerial Vehicles (UAVs), and Federal Communications Commission (FCC) licencing lead to evaluation limited to simulation‐based or simplistic, non‐representative hardware experimentation. A site‐specific ray‐tracing emulation framework is presented to provide a realistic evaluation of communication devices under RF jamming attacks in complex scenarios involving mobility, vehicular, and UAV systems. System architecture and capabilities are provided for the devices under test, real‐world jamming adversaries, channel modelling, and channel emulation. Case studies are provided to demonstrate the use of the framework for different applications and jamming threats. The experimental results illustrate the benefit of the ray‐tracing emulation system for conducting complex wireless communication studies under the presence of RF jamming.more » « less
-
Robot locomotion is typically generated by coordinated integration of single-purpose components, like actuators, sensors, body segments, and limbs. We posit that certain future robots could self-propel using systems in which a delineation of components and their interactions is not so clear, becoming robust and flexible entities composed of functional components that are redundant and generic and can interact stochastically. Control of such a collective becomes a challenge because synthesis techniques typically assume known input-output relationships. To discover principles by which such future robots can be built and controlled, we study a model robophysical system: planar ensembles of periodically deforming smart, active particles—smarticles. When enclosed, these individually immotile robots could collectively diffuse via stochastic mechanical interactions. We show experimentally and theoretically that directed drift of such a supersmarticle could be achieved via inactivation of individual smarticles and used this phenomenon to generate endogenous phototaxis. By numerically modeling the relationship between smarticle activity and transport, we elucidated the role of smarticle deactivation on supersmarticle dynamics from little data—a single experimental trial. From this mapping, we demonstrate that the supersmarticle could be exogenously steered anywhere in the plane, expanding supersmarticle capabilities while simultaneously enabling decentralized closed-loop control. We suggest that the smarticle model system may aid discovery of principles by which a class of future “stochastic” robots can rely on collective internal mechanical interactions to perform tasks.more » « less
An official website of the United States government

