skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deciphering chemical ordering in High Entropy Materials: A machine learning-accelerated high-throughput cluster expansion approach.
The Cluster Expansion (CE) Method encounters significant computational challenges in multicomponent systems due to the computational expense of generating training data through density functional theory (DFT) calculations. This work aims to refine the cluster and structure selection processes to mitigate these challenges. We introduce a novel method that significantly reduces the computational load associated with the calculation of fitting parameters. This method employs a Graph Neural Network (GNN) model, leveraging the M3GNet network, which is trained using a select subset of DFT calculations at each ionic step. The trained surrogate model excels in predicting the volume and energy of the final structure for a relaxation run. By employing this model, we sample thousands of structures and fit a CE model to the energies of these GNN-relaxed structures. This approach, utilizing a large training dataset, effectively reduces the risk of overfitting, yielding a CE model with a root-mean-square error (RMSE) below 10 meV/atom. We validate our method’s effectiveness in two test cases: the (Ti, Cr, Zr, Mo, Hf, Ta)B2 diboride system and the Refractory High-Entropy Alloy (HEA) AlTiZrNbHfTa system. Our findings demonstrate the significant advantages of integrating a GNN model, specifically the M3GNet network, with CE methods for the efficient predictive analysis of chemical ordering in High Entropy Materials. The accelerating capabilities of the hybrid ML-CE approach to investigate the evolution of Short Range Ordering (SRO) in a large number of stoichiometric systems. Finally, we show how it is possible to correlate the strength of chemical ordering to easily accessible alloy parameters.  more » « less
Award ID(s):
2119103
PAR ID:
10542597
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Acta Materialia
Volume:
276
Issue:
C
ISSN:
1359-6454
Page Range / eLocation ID:
120137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While high-entropy alloys (HEAs) present exponentially large compositional space for alloy design, they also create enormous computational challenges to trace the compositional space, especially for the inherently expensive density functional theory calculations (DFT). Recent works have integrated machine learning into DFT to overcome these challenges. However, often these models require an intensive search of appropriate physics-based descriptors. In this paper, we employ a 3D convolutional neural network over just one descriptor, i.e., the charge density derived from DFT, to simplify and bypass the hunt for the descriptors. We show that the elastic constants of face-centered cubic multi-elemental alloys in the Ni–Cu–Au–Pd–Pt system can be predicted from charge density. In addition, using our recent PREDICT approach, we show that the model can be trained only on the charge densities of simpler binary and ternary alloys to effectively predict elastic constants in complex multi-elemental alloys, thereby further enabling easier property-tracing in the large compositional space of HEAs. 
    more » « less
  2. Identifying thermodynamically stable crystal structures remains a key challenge in materials chemistry. Computational crystal structure prediction (CSP) workflows typically rank candidate structures by lattice energy to assess relative stability. Approaches using self-consistent first-principles calculations become prohibitively expensive, especially when millions of energy evaluations are required for complex molecular systems with many atoms per unit cell. Here, we provide a detailed analysis of our methodology and results from the seventh blind test of crystal structure prediction organized by the Cambridge Crystallographic Data Centre (CCDC). We present an approach that significantly accelerates CSP by training target-specific machine learned interatomic potentials (MLIPs). AIMNet2 MLIPs are trained on density functional theory (DFT) calculations of molecular clusters, herein referred to as n-mers. We demonstrate that potentials trained on gas phase dispersion-corrected DFT reference data of n-mers successfully extend to crystalline environments, accurately characterizing the CSP landscape and correctly ranking structures by relative stability. Our methodology effectively captures the underlying physics of thermodynamic crystal stability using only molecular cluster data, avoiding the need for expensive periodic calculations. The performance of target-specific AIMNet2 interatomic potentials is illustrated across diverse chemical systems relevant to pharmaceutical, optoelectronic, and agrochemical applications, demonstrating their promise as efficient alternatives to full DFT calculations for routine CSP tasks. 
    more » « less
  3. null (Ed.)
    Physical interactions of proteins play key functional roles in many important cellular processes. To understand molecular mechanisms of such functions, it is crucial to determine the structure of protein complexes. To complement experimental approaches, which usually take a considerable amount of time and resources, various computational methods have been developed for predicting the structures of protein complexes. In computational modeling, one of the challenges is to identify near-native structures from a large pool of generated models. Here, we developed a deep learning–based approach named Graph Neural Network–based DOcking decoy eValuation scorE (GNN-DOVE). To evaluate a protein docking model, GNN-DOVE extracts the interface area and represents it as a graph. The chemical properties of atoms and the inter-atom distances are used as features of nodes and edges in the graph, respectively. GNN-DOVE was trained, validated, and tested on docking models in the Dockground database and further tested on a combined dataset of Dockground and ZDOCK benchmark as well as a CAPRI scoring dataset. GNN-DOVE performed better than existing methods, including DOVE, which is our previous development that uses a convolutional neural network on voxelized structure models. 
    more » « less
  4. Nuclear magnetic resonance (NMR) is one of the primary techniques used to elucidate the chemical structure, bonding, stereochemistry, and conformation of organic compounds. The distinct chemical shifts in an NMR spectrum depend upon each atom's local chemical environment and are influenced by both through-bond and through-space interactions with other atoms and functional groups. The in silico prediction of NMR chemical shifts using quantum mechanical (QM) calculations is now commonplace in aiding organic structural assignment since spectra can be computed for several candidate structures and then compared with experimental values to find the best possible match. However, the computational demands of calculating multiple structural- and stereo-isomers, each of which may typically exist as an ensemble of rapidly-interconverting conformations, are expensive. Additionally, the QM predictions themselves may lack sufficient accuracy to identify a correct structure. In this work, we address both of these shortcomings by developing a rapid machine learning (ML) protocol to predict 1 H and 13 C chemical shifts through an efficient graph neural network (GNN) using 3D structures as input. Transfer learning with experimental data is used to improve the final prediction accuracy of a model trained using QM calculations. When tested on the CHESHIRE dataset, the proposed model predicts observed 13 C chemical shifts with comparable accuracy to the best-performing DFT functionals (1.5 ppm) in around 1/6000 of the CPU time. An automated prediction webserver and graphical interface are accessible online at http://nova.chem.colostate.edu/cascade/. We further demonstrate the model in three applications: first, we use the model to decide the correct organic structure from candidates through experimental spectra, including complex stereoisomers; second, we automatically detect and revise incorrect chemical shift assignments in a popular NMR database, the NMRShiftDB; and third, we use NMR chemical shifts as descriptors for determination of the sites of electrophilic aromatic substitution. 
    more » « less
  5. Exploiting Chemical Short-Range Order (CSRO) is a promising avenue for manipulating the properties of alloys. However, existing modeling frameworks are not sufficient to predict CSRO in multicomponent alloys (>3 components) in an efficient and reliable manner. In this work, we developed a hybrid computational thermodynamics framework by combining unique advantages from Cluster Variation Method (CVM) and CALculation of PHAse Diagram (CALPHAD) method. The key is to decompose the cumbersome cluster variables in CVM into fewer site variables of the basic cluster using the Fowler-Yang-Li (FYL) transform, which considerably reduces the number of variables that must be minimized for multicomponent systems. CSRO is incorporated into CALPHAD with a novel cluster-based solution model called FYL-CVM. This new framework brings more physics into CALPHAD while maintaining its practicality and achieves a good balance between accuracy and computational cost. It leverages statistical mechanics to yield a more physical description of configurational entropy and opens the door to cluster-based CALPHAD database development. The application of the FYL-CVM model in a prototype fcc AB alloy demonstrates its capability to calculate the phase diagram and thermodynamic properties with remarkable accuracy comparable to CVM. The hybrid CVM-CALPHAD framework represents a new methodology for thermodynamic modeling that enables atomic-scale order to be exploited for materials design. 
    more » « less