skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Near-field variability of evaposublimation in a montane conifer forest
Methods that combine in-situ measurements, statistical methods, and model simulations with remotely sensed data provide a pathway for improving the robustness of surface flux products. For this research, we acquired eddy-covariance fluxes along a five-tower transect in a snowy montane forest over three consecutive winters to characterize near-field variability of the subcanopy environment. The novel experiment design enabled discriminating near-field evaposublimation sources. Boosted regression trees reveal that the predictive capacity of state variables change with season and storm cycle frequency. High rates of post-storm evaposublimation of canopy-intercepted snow at this site were constrained by short residence time of snow in the canopy due to throughfall and melt. The snow melt-out date for open vs. closed canopy conditions depended on total snowfall accumulation. Compared with low accumulation years, the snow melt-out date under the dense canopy during the high accumulation winter was later than for the open area, as shading became more important later in the season. The field experiments informed an environmental response function that was used to integrate ERA5-Land latent heat flux data at 20-km nominal resolution with USFS Tree Canopy Fraction data at 30-m resolution and showed near-field flux variability that was not resolved in model simulations. Previous evaposublimation results from experiments in alpine and subalpine environments do not directly translate to a montane forest due to differences in process rates.  more » « less
Award ID(s):
1848019
PAR ID:
10542627
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
11
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intermittent snow depth observations can be leveraged with data assimilation (DA) to improve model estimates of snow water equivalent (SWE) at the point scale. A key consideration for scaling a DA system to the basin scale is its performance at locations with forest cover – where canopy-snow interactions affect snow accumulation and melt, yet are difficult to model and parameterize. We implement a particle filter (PF) assimilation technique to assimilate intermittent depth observations into the Flexible Snow Model (FSM2), and validate the output against snow density and SWE measurements across paired forest and open sites, at two locations with different climates and forest structures. Assimilation reduces depth error by 70-90%, density error by 5-30%, and SWE error by 50-70% at forest locations (relative to control model runs) and brings errors in-line with adjacent open sites. The PF correctly simulates the seasonal evolution of the snowpack under forest canopy, including cases where interception lowers SWE in the forest during accumulation, and shading reduces melt during the ablation season (relative to open sites). The snow model outputs are sensitive to canopy-related parameters, but DA reduces the range in depth and SWE estimates resulting from spatial variations or uncertainties in these parameters by more than 50%. The results demonstrate that the challenge of accurately measuring, estimating, or calibrating canopy-related parameters is reduced when snow depth observations are assimilated to improve SWE estimates.</p> 
    more » « less
  2. Abstract Snow disappearance date (SDD) affects the ecohydrological dynamics of montane forests, by altering water availability, forest fire regime, and the land surface energy budget. The forest canopy modulates SDD through competing processes; dense canopy intercepts snowfall and enhances longwave radiation while shading snowpack from shortwave radiation and sheltering it from the wind. Limited ground‐based observations of snow presence and absence have restricted our ability to unravel the dominant processes affecting SDD in montane forests. We apply a lidar‐derived method to estimate fractional snow cover area (fSCA) at two relatively warm sites in the Sierra Nevada and two colder sites in the Rocky Mountains, which we link to SDD. With the exception of late season snowpack and low fSCA, snow retention is longer under low vegetation density than under high vegetation density in both warm and cold sites. Warm forests consistently have longer snow retention in open areas compared to dense under canopy areas, particularly on south‐facing slopes. Cold forests tend to have longer snow retention under lower density canopy compared to open areas, particularly on north‐facing slopes. We use this empirical analysis to make process inferences and develop an initial framework to predict SDD that incorporates the role of topography and vegetation structure. Building on our framework will be necessary to provide better forest management recommendations for snowpack retention across complex terrain and heterogenous canopy structure. 
    more » « less
  3. Montane snowpack in the Sierra Nevada provides critical water resources for ecological functions and downstream communities. Forest removal allows us to manage the snowpack in montane forests and mitigate the effect of climate on water resources. Little is known about the mid- to long-term effects that changing snowpack following forest disturbance has on tree re-growth, and how tree re-growth might in turn affect snowpack accumulation and melt. We use a 1-m resolution process-based snow model (SnowPALM) coupled with a stand-scale ecohydrological model (RHESSys) that resolves water, energy and carbon cycling to represent tree growth, and to quantify how trees and snowpack co-evolve following two disturbance scenarios (thinning and clearcutting) over a period of 40 years in a small 100 m x 234 m mid-elevation forested area in the Sierra Nevada, California. We first calculate the impact of forest disturbance on the snowpack assuming no tree regrowth and then we compare it with scenarios that include the feedback of trees regrowth on the snowpack. Without tree regrowth, snow accumulation and melt volume increase on average by roughly 5 % and 13 % following thinning and clearcutting, respectively. With tree regrowth, a regrowth rate of 0.75 and 1.15 m/decade are found for thinning and clearcutting, respectively, along with a decrease of melt volumes of 2.5 to 0.9 mm/decade, respectively. About 50 % of the snowmelt volume gains from forest thinning are lost after 40 years of regrowth, whereas only about 7 % is lost from clearcutting after the same period, which are largely explained by changes to canopy interception and sublimation. This proof-of-concept study is expected to shed light into the coevolution of montane forests and snowpack response to forest disturbance. 
    more » « less
  4. Abstract Understanding how the presence of a forest canopy influences the underlying snowpack is critical to making accurate model predictions of bulk snow density and snow water equivalent (SWE). To investigate the relative importance of forest processes on snow density and SWE, we applied the SUMMA model at three sites representing diverse snow climates in Colorado (USA), Oregon (USA), and Alberta (Canada) for 5 years. First, control simulations were run for open and forest sites. Comparisons to observations showed the uncalibrated model with NLDAS‐2 forcing performed reasonably. Then, experiments were completed to isolate how forest processes affected modelled snowpack density and SWE, including: (1) mass reduction due to interception loss, (2) changes in the phase and amount of water delivered from the canopy to the underlying snow, (3) varying new snow density from reduced wind speed, and (4) modification of incoming longwave and shortwave radiation. Delivery effects (2) increased forest snowpack density relative to open areas, often more than 30%. Mass effects (1) and wind effects (3) decreased forest snowpack density, but generally by less than 6%. The radiation experiment (4) yielded negligible to positive effects (i.e., 0%–10%) on snowpack density. Delivery effects on density were greatest at the warmest times in the season and at the warmest site (Oregon): higher temperatures increased interception and melted intercepted snow, which then dripped to the underlying snowpack. In contrast, mass effects and radiation effects were shown to have the greatest impact on forest‐to‐open SWE differences, yielding differences greater than 30%. The study highlights the importance of delivery effects in models and the need for new types of observations to characterize how canopies influence the flux of water to the snow surface. 
    more » « less
  5. Modern forest management generally relies on thinning treatments to reduce fuels and mitigate the threat of catastrophic wildfire. They have also been proposed as a tool to augment downstream flows by reducing evapotranspiration. Warming climates are causing many forests to transition from snow-dominated to rain-dominated precipitation regimes—in which water stores are depleted earlier in the summer. However, there are relatively few studies of these systems that directly measure the hydrologic impacts of such treatments during and following snow-free winters. This work compares the below-canopy meteorological and subsurface hydrologic differences between two thinning prescriptions and an unaltered Control during periods of extreme drought and near-record precipitation (with little snow). The field site was within a coniferous forest in the rain-snow transition zone of the southern Cascades, near the Sierra Nevada Range of California. Both thinning-prescriptions had a modest and predictable impact on below-canopy meteorology, which included their causing lower nighttime minimum temperatures in the critical summer months and higher wind speeds. Relative to the Control, both treatments affected soil moisture storage by delaying its annual decline and increasing its minimum value by the end of the season. The onset of soil moisture depletion was strongly tied to the magnitude of winter precipitation. In dry years, it began much earlier within the dense Control stand than in the treated ones, and, without snow, soil moisture was not replenished in the late spring. During high precipitation years, the storage capacity was topped off for all three stands, which resulted in similar timing of moisture decline across them, later in the season. The two thinning prescriptions increased stores through the height of summer (in wet and drought years). Finally, the basal area increment (BAI) of the remaining trees rose in both, suggesting they used the excess moisture to support rapid growth. 
    more » « less