skip to main content

This content will become publicly available on October 28, 2023

Title: Soil moisture and micrometeorological differences across reference and thinned stands during extremes of precipitation, southern Cascade Range
Modern forest management generally relies on thinning treatments to reduce fuels and mitigate the threat of catastrophic wildfire. They have also been proposed as a tool to augment downstream flows by reducing evapotranspiration. Warming climates are causing many forests to transition from snow-dominated to rain-dominated precipitation regimes—in which water stores are depleted earlier in the summer. However, there are relatively few studies of these systems that directly measure the hydrologic impacts of such treatments during and following snow-free winters. This work compares the below-canopy meteorological and subsurface hydrologic differences between two thinning prescriptions and an unaltered Control during periods of extreme drought and near-record precipitation (with little snow). The field site was within a coniferous forest in the rain-snow transition zone of the southern Cascades, near the Sierra Nevada Range of California. Both thinning-prescriptions had a modest and predictable impact on below-canopy meteorology, which included their causing lower nighttime minimum temperatures in the critical summer months and higher wind speeds. Relative to the Control, both treatments affected soil moisture storage by delaying its annual decline and increasing its minimum value by the end of the season. The onset of soil moisture depletion was strongly tied to the magnitude of winter more » precipitation. In dry years, it began much earlier within the dense Control stand than in the treated ones, and, without snow, soil moisture was not replenished in the late spring. During high precipitation years, the storage capacity was topped off for all three stands, which resulted in similar timing of moisture decline across them, later in the season. The two thinning prescriptions increased stores through the height of summer (in wet and drought years). Finally, the basal area increment (BAI) of the remaining trees rose in both, suggesting they used the excess moisture to support rapid growth. « less
; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Forests and Global Change
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow‐dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown. We conducted crossed manipulations of spring snow melt timing (early vs. control) and summer monsoon precipitation (addition, control, and reduction) that mimicked recent natural variation, and examined plastic responses in floral traits ofIpomopsis aggregataover 3 years in the Rocky Mountains. We tested whether increased summer precipitation compensated for earlier snow melt, and if plasticity was associated with changes in soil moisture and/or leaf gas exchange. Lower summer precipitation decreased corolla length, style length, corolla width, sepal width, and nectar production, and increased nectar concentration. Earlier snow melt (taking into account natural and experimental variation) had the same effects on those traits and decreased inflorescence height. The effect of reduced summer precipitation was stronger in earlier snow melt years for corolla length and sepal width. Trait reductions were explainedmore »by drier soil during the flowering period, but this effect was only partially explained by how drier soils affected plant water stress, as measured by leaf gas exchange. We predicted the effects of plastic trait changes on pollinator visitation rates, pollination success, and seed production using prior studies onI. aggregata. The largest predicted effect of drier soil on relative fitness components via plasticity was a decrease in male fitness caused by reduced pollinator rewards (nectar production). Early snow melt and reduced precipitation are strong drivers of phenotypic plasticity, and both should be considered when predicting effects of climate change on plant traits in snow‐dominated ecosystems.

    « less
  2. Abstract

    A two decade‐long megadrought, with likely anthropogenic causes, has impacted forest growth and mortality across the southwestern U.S. Given this event, and the future likelihood of similar climate challenges, it is important to understand how different water resources are used by semi‐arid forests in this region. Within the geographic domain of the North American Monsoon climate system, we studied seasonal water‐use in eight differentPinus ponderosamontane forests distributed across a climate gradient with varying contributions from winter and summer precipitation. We collected oxygen isotopes from precipitation, soil, and xylem water during two contrasting hydrologic years to determine how trees differentially use winter versus summer precipitation sources. Most trees switched from using snowmelt water as the primary source during the early‐summer hyper‐arid period, to monsoon rainwater during the late‐summer. However, during the low snowpack year, which represents the most common climate phenomenon during the megadrought, trees at all sites used less summer rain when compared to the higher snowpack year, demonstrating a drought‐induced antecedent influence of winter precipitation on the uptake of summer rain. A possible mechanism to explain the antecedent effect is an earlier snow disappearance during the low snowpack year weakening hydrologic connectivity within the soil profile, decreasing themore »soil infiltration of summer rains. However, in years with higher snowpack, the snow lasts longer, and this can improve the hydrologic connectivity within the soil profile. As a result, there is more infiltration of summer rains into the soils. This can enhance the maintenance of active shallow fine‐root biomass during the period when snowpack disappears, and monsoon rains have yet to arrive. These findings provide insight into how the seasonal interactions between major seasonal climate systems influence forest tree water use in the face of an extreme megadrought.

    « less
  3. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  4. Abstract

    Variations in hillslope soil moisture control forest hydrologic fluxes and storage pools, yet sparse observations combined with the complexity and heterogeneity of water movement and storage in the vadose zone can make temporal and spatial patterns and processes difficult to predict. We used two years of field observations of volumetric soil moisture at three depths (15, 30, and 100 cm) across five topographic positions (riparian, toeslope, sideslope, shoulder, and ridge) along three hillslope transects to better understand how soil moisture changes with hillslope position and through time. As expected, we found higher values of soil moisture at all depths at the riparian and toeslope positions. Unexpectedly, we found that ridges were particularly wet during the wet winter months and dried quickly during the summer months, indicating that topography alone cannot account for mean wet season soil moisture in our Mediterranean climate field site. The variability in soil moisture across all soil depths and topographic positions was greatest when soils were dry and decreased under wet soil conditions; this variability remained high in the deeper soil horizons, regardless of season. Lastly, event analysis suggests that the response to early season rainfall was highly variable along the hillslopes and was likely dominatedmore »by localized controls such as microtopography and vegetation as well as soil texture, antecedent moisture conditions, and rainfall characteristics. Our results suggest that the drivers of wet and dry season soil moisture dynamics can vary across topographic positions along a hillslope and do not always follow topographic controls.

    « less
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>