skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New Insights into the South American Low-Level Jet from RELAMPAGO Observations
Abstract The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) campaign produced unparalleled observations of the South American low-level jet (SALLJ) in central Argentina with high temporal observations located in the path of the jet and upstream of rapidly growing convection. The vertical and temporal structure of the jet is characterized using 3-hourly soundings launched at two fixed sites near the Sierras de Córdoba (SDC), along with high-resolution reanalysis data. Objective SALLJ identification criteria are applied to each sounding to determine the presence, timing, and vertical characteristics of the jet. The observations largely confirm prior results showing that SALLJs most frequently come from the north, occur overnight, and peak in the low levels, though SALLJs notably peaked higher near the end of longer-duration events during RELAMPAGO. This study categorizes SALLJs into shorter-duration events with jet cores peaking overnight in the low levels and longer 5–6-day events with elevated jets near the end of the period that lack a clear diurnal cycle. Evidence of both boundary layer processes and large-scale forcing were observed during shorter-duration events, whereas synoptic forcing dominated the longer 5–6-day events. The highest amounts of moisture and larger convective coverage east of the SDC occurred near the end of the 5–6-day SALLJ events. Significance StatementThe South American low-level jet (SALLJ) is an area of enhanced northerly winds that likely contributes to long-lived, widespread thunderstorms in Southeastern South America (SESA). This study uses observations from a recent SESA field project to improve understanding of the variability of the SALLJ and the underlying processes. We related jet occurrence to upper-level environmental patterns and differences in the progression speed of those patterns to varying durations of the jet. Longer-duration jets were more elevated, transported moisture southward from the Amazon, and coincided with the most widespread storms. These findings enable future research to study the role of the SALLJ in the life cycle of storms in detail, leading to improved storm prediction in SESA.  more » « less
Award ID(s):
1661768 1661657 2146709
PAR ID:
10542684
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
150
Issue:
6
ISSN:
0027-0644
Format(s):
Medium: X Size: p. 1247-1271
Size(s):
p. 1247-1271
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study documents the spatial and temporal distribution of the South American low-level jet (SALLJ) and quantifies its impact on the convective environment using a 6.5-month convection-permitting simulation during the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) campaigns. Overall, the simulation reproduces the observed SALLJ characteristics in central Argentina near the Sierras de Córdoba (SDC), a focal point for terrain-focused upscale growth. SALLJs most frequently occur in the summer with maxima to the northwest and east of the SDC and minima over the higher terrain. The shallower SALLJs (<1750 m) have a strong overnight skew, while the elevated jets are more equally spread throughout the day. SALLJ periods often have higher amounts of low-level moisture and instability compared to non-SALLJ periods, with these impacts increasing over time when the SALLJ is present and decreasing afterward. The SALLJ may enhance low-level wind shear magnitudes (particularly when accounting for the jet height); however, enhancement is somewhat limited due to the presence of speed shear in most situations. SALLJ periods are associated with low-level directional shear favorable for organized convection and an orientation of cloud-layer wind shear parallel to the terrain, which could favor upscale growth. A case study is shown in which the SALLJ influenced both the magnitude and direction of wind shear concurrent with convective upscale growth near the SDC. This study highlights the complex relationship between the SALLJ and its impacts during periods of widespread convection. Significance StatementAreas of enhanced low-level winds, or low-level jets, likely promote favorable conditions for upscale growth, the processes by which storms grow larger. Central Argentina is an ideal place to study the influence of low-level jets on upscale growth as storms often stay connected to the Sierras de Córdoba Mountain range, growing over a relatively small area. This study uses model data to describe the distribution and impact of the South American low-level jet on the storm environment. The South American low-level jet is frequently found near the Sierras de Córdoba, and moisture and convective instability increase when it is present. However, the jet’s impact on other conditions important for upscale growth, such as vertical wind shear, is not as straightforward. 
    more » « less
  2. Abstract A multiscale analysis of the environment supporting tornadoes in southeast South America (SESA) was conducted based on a self-constructed database of 74 reports. Composites of environmental and convective parameters from ERA5 were generated relative to tornado events. The distribution of the reported tornadoes maximizes over the Argentine plains, while events are rare close to the Andes and south of Sierras de Córdoba. Events are relatively common in all seasons except in winter. Proximity environment evolution shows enhanced instability, deep-layer vertical wind shear, storm-relative helicity, reduced convective inhibition, and a lowered lifting condensation level before or during the development of tornadic storms in SESA. No consistent signal in low-level wind shear is seen during tornado occurrence. However, a curved hodograph with counterclockwise rotation is present. The Significant Tornado Parameter (STP) is also maximized prior to tornadogenesis, most strongly associated with enhanced CAPE. Differences in the convective environment between tornadoes in SESA and the U.S. Great Plains are discussed. On the synoptic scale, tornado events are associated with a strong anomalous trough crossing the southern Andes that triggers lee cyclogenesis, subsequently enhancing the South American low-level jet (SALLJ) that increases moisture advection to support deep convection. This synoptic trough also enhances vertical shear that, along with enhanced instability, sustains organized convection capable of producing tornadic storms. At planetary scales, the tornadic environment is modulated by Rossby wave trains that appear to be forced by convection near northern Australia. Madden–Julian oscillation phase 3 preferentially occurs 1–2 weeks ahead of tornado occurrence. Significance StatementThe main goal of this study is to describe what atmospheric conditions (from local to global scales) are present prior to and during tornadic storms impacting southeast South America (SESA). Increasing potential for deep convection, wind shear, and potential for rotating updrafts, as well as reducing convective inhibition and cloud-base height, are predominant a few hours before and during the events in connection to low-level northerly winds enhancing moisture transport to the region. Remote convective activity near northern Australia appears to influence large-scale atmospheric circulation that subsequently triggers convective storms supporting tornadogenesis 1–2 weeks later in SESA. Our findings highlight the importance of accounting for atmospheric processes occurring at different scales to understand and predict tornado occurrences. 
    more » « less
  3. Abstract Austral summer precipitation increased by 27% from 1902 to 2020 over southeastern South America (SESA), one of the largest centennial precipitation trends observed globally. We assess the influence of the South American low‐level jet on the SESA precipitation trend by analyzing low‐level moisture fluxes into SESA in two reanalysis datasets from 1951 to 2020. Increased moisture flux through the jet accounts for 20%–45% of the observed SESA precipitation trend. While results vary among reanalyzes, both point to increased humidity as a fundamental driver of increased moisture flux and SESA precipitation. Increased humidity within the jet is consistent with warming sea surface temperatures driven by anthropogenic forcing, although additional natural climate variations also may have played a role. The jet's velocity also increased, further enhancing precipitation, but without a clear connection to anthropogenic forcing. Our findings indicate the SESA precipitation trend is partly attributable to jet intensification arising from both natural variability and anthropogenic forcing. 
    more » « less
  4. Abstract Intense deep convection and large mesoscale convective systems (MCSs) are known to occur downstream of the Andes in subtropical South America. Deep convection is often focused along the Sierras de Córdoba (SDC) in the afternoon and then rapidly grows upscale and moves to the east overnight. However, how the Andes and SDC impact the life cycle of MCSs under varying synoptic conditions is not well understood. Two sets of terrain-modification experiments using WRF are used to investigate the impact of topography in different synoptic regimes. The first set is run on the 13–14 December 2018 MCS case from RELAMPAGO, which featured a deep synoptic trough, strong lee cyclogenesis near the SDC, an enhanced low-level jet, and rapid upscale growth of an MCS. When the Andes are reduced by 50%, the lee cyclone and low-level jet that develop are weaker than with the full Andes, and the resulting MCS is weak and moves faster to the east. When the SDC are removed, few differences between the environment and resulting MCS relative to the control run are seen. A second set of experiments are run on the 25–26 January 2019 case in which a large MCS developed over the SDC and remained tied there for an extended period under weak synoptic forcing. The experiment that produces the most similar MCS to the control is when the Andes are reduced by 50% while maintaining the height of the SDC, suggesting the SDC may play a more important role in the MCS life cycle under quiescent synoptic conditions. 
    more » « less
  5. null (Ed.)
    Abstract Subtropical South America (SSA) east of the Andes Mountains is a global hotspot for mesoscale convective systems (MCSs). Wide convective cores (WCCs) are typically embedded within mature MCSs, contribute over 40% of SSA’s warm-season rainfall, and are often associated with severe weather. Prior analysis of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data identified WCCs in SSA and associated synoptic conditions during austral summer. As WCCs also occur during the austral spring, this study uses the 16-year TRMM PR dataset and ERA5 reanalysis to compare anomalies in environmental conditions between austral spring (SON) and summer (DJF) for the largest and smallest WCCs in SSA. During both seasons, large WCCs are associated with an anomalous mid-level trough that slowly crosses the Andes Mountains and a northerly South American low-level jet (SALLJ) over SSA, though the SON trough and SALLJ anomalies are stronger and located farther northeastward than in DJF. A synoptic pattern evolution resembling large WCC environments is illustrated through a multi-day case during the RELAMPAGO field campaign (10-13 November 2018). Unique high-temporal resolution soundings showed strong mid-level vertical wind shear associated with this event, induced by the juxtaposition of the northerly SALLJ and southerly near-surface flow. It is hypothesized that the Andes help create a quasi-stationary trough/ridge pattern such that favorable synoptic conditions for deep convection persist for multiple days. For the smallest WCCs, anomalously weaker synoptic-scale forcing was present compared to the largest events, especially for DJF, pointing to future work exploring MCS formation under weaker synoptic conditions. 
    more » « less