Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Córdoba Province in Argentina is a global hotspot for deep hail-producing storms. Previous studies of hail formation and detection largely relied on satellite snapshots or modeling studies, but lacked hail validation, relying instead on proxy metrics. To address this limitation, this study used hail collected in the mountainous Córdoba region in collaboration with the citizen science program “Cosecheros de Granizo 2018–2020” including from a record-breaking hail event and from the 2018–2019 RELAMPAGO field campaign. Three cases including a MCS and two supercells, which have verified hail in different environment locations relative to the Sierras de Córdoba, were analyzed for multi-spectral signatures in GOES-16 satellite data. Brightness temperatures decreased over time after convective initiation, reaching values cooler than the tropopause with variations around those values of different magnitudes. Overall, all cases exhibited a slight weakening of the updraft and strong presence of smaller ice crystal sizes just prior to the hail report, especially for the larger hailstones. The results demonstrate promise in using satellite proxies for hail detection in multiple environments for different storm modes. The long-term goal is to better understand hail-producing storms and unique challenges of forecasting hail in this region.more » « less
-
Abstract The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) campaign produced unparalleled observations of the South American low-level jet (SALLJ) in central Argentina with high temporal observations located in the path of the jet and upstream of rapidly growing convection. The vertical and temporal structure of the jet is characterized using 3-hourly soundings launched at two fixed sites near the Sierras de Córdoba (SDC), along with high-resolution reanalysis data. Objective SALLJ identification criteria are applied to each sounding to determine the presence, timing, and vertical characteristics of the jet. The observations largely confirm prior results showing that SALLJs most frequently come from the north, occur overnight, and peak in the low levels, though SALLJs notably peaked higher near the end of longer-duration events during RELAMPAGO. This study categorizes SALLJs into shorter-duration events with jet cores peaking overnight in the low levels and longer 5–6-day events with elevated jets near the end of the period that lack a clear diurnal cycle. Evidence of both boundary layer processes and large-scale forcing were observed during shorter-duration events, whereas synoptic forcing dominated the longer 5–6-day events. The highest amounts of moisture and larger convective coverage east of the SDC occurred near the end of the 5–6-day SALLJ events. Significance Statement The South American low-level jet (SALLJ) is an area of enhanced northerly winds that likely contributes to long-lived, widespread thunderstorms in Southeastern South America (SESA). This study uses observations from a recent SESA field project to improve understanding of the variability of the SALLJ and the underlying processes. We related jet occurrence to upper-level environmental patterns and differences in the progression speed of those patterns to varying durations of the jet. Longer-duration jets were more elevated, transported moisture southward from the Amazon, and coincided with the most widespread storms. These findings enable future research to study the role of the SALLJ in the life cycle of storms in detail, leading to improved storm prediction in SESA.more » « less
-
null (Ed.)Abstract Subtropical South America (SSA) east of the Andes Mountains is a global hotspot for mesoscale convective systems (MCSs). Wide convective cores (WCCs) are typically embedded within mature MCSs, contribute over 40% of SSA’s warm-season rainfall, and are often associated with severe weather. Prior analysis of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data identified WCCs in SSA and associated synoptic conditions during austral summer. As WCCs also occur during the austral spring, this study uses the 16-year TRMM PR dataset and ERA5 reanalysis to compare anomalies in environmental conditions between austral spring (SON) and summer (DJF) for the largest and smallest WCCs in SSA. During both seasons, large WCCs are associated with an anomalous mid-level trough that slowly crosses the Andes Mountains and a northerly South American low-level jet (SALLJ) over SSA, though the SON trough and SALLJ anomalies are stronger and located farther northeastward than in DJF. A synoptic pattern evolution resembling large WCC environments is illustrated through a multi-day case during the RELAMPAGO field campaign (10-13 November 2018). Unique high-temporal resolution soundings showed strong mid-level vertical wind shear associated with this event, induced by the juxtaposition of the northerly SALLJ and southerly near-surface flow. It is hypothesized that the Andes help create a quasi-stationary trough/ridge pattern such that favorable synoptic conditions for deep convection persist for multiple days. For the smallest WCCs, anomalously weaker synoptic-scale forcing was present compared to the largest events, especially for DJF, pointing to future work exploring MCS formation under weaker synoptic conditions.more » « less
-
null (Ed.)Abstract This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in Córdoba and Mendoza provinces in Argentina, and western Rio Grande do Sul State in Brazil in 2018-2019 that involved more than 200 scientists and students from the US, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates and other unusual lightning phenomena, but few tornadoes. The 5 distinct scientific foci of RELAMPAGO: convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multi-national education, public outreach, and social media data-gathering associated with the campaign, is summarized.more » « less
-
null (Ed.)Abstract The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.more » « less
-
El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengthening of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO.