skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of machine learning models that predict lncRNA subcellular localization
Abstract The lncATLAS database quantifies the relative cytoplasmic versus nuclear abundance of long non-coding RNAs (lncRNAs) observed in 15 human cell lines. The literature describes several machine learning models trained and evaluated on these and similar datasets. These reports showed moderate performance, e.g. 72–74% accuracy, on test subsets of the data withheld from training. In all these reports, the datasets were filtered to include genes with extreme values while excluding genes with values in the middle range and the filters were applied prior to partitioning the data into training and testing subsets. Using several models and lncATLAS data, we show that this ‘middle exclusion’ protocol boosts performance metrics without boosting model performance on unfiltered test data. We show that various models achieve only about 60% accuracy when evaluated on unfiltered lncRNA data. We suggest that the problem of predicting lncRNA subcellular localization from nucleotide sequences is more challenging than currently perceived. We provide a basic model and evaluation procedure as a benchmark for future studies of this problem.  more » « less
Award ID(s):
1747788 1920920 2125872
PAR ID:
10542691
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
NAR Genomics and Bioinformatics
Volume:
6
Issue:
3
ISSN:
2631-9268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Normalization is a critical step in quantitative analyses of biological processes. Recent works show that cross-platform integration and normalization enable machine learning (ML) training on RNA microarray and RNA-seq data, but no independent datasets were used in their studies. Therefore, it is unclear how to improve ML modelling performance on independent RNA array and RNA-seq based datasets. Inspired by the house-keeping genes that are commonly used in experimental biology, this study tests the hypothesis that non-differentially expressed genes (NDEG) may improve normalization of transcriptomic data and subsequently cross-platform modelling performance of ML models. Microarray and RNA-seq datasets of the TCGA breast cancer were used as independent training and test datasets, respectively, to classify the molecular subtypes of breast cancer. NDEG (p>0.85) and differentially expressed genes (DEG, p<0.05) were selected based on the p values of ANOVA analysis and used for subsequent data normalization and classification, respectively. Models trained based on data from one platform were used for testing on the other platform. Our data show that NDEG and DEG gene selection could effectively improve the model classification performance. Normalization methods based on parametric statistical analysis were inferior to those based on nonparametric statistics. In this study, the LOG_QN and LOG_QNZ normalization methods combined with the neural network classification model seem to achieve better performance. Therefore, NDEG-based normalization appears useful for cross-platform testing on completely independent datasets. However, more studies are required to examine whether NDEG-based normalization can improve ML classification performance in other datasets and other omic data types. 
    more » « less
  2. null (Ed.)
    Existing public face image datasets are strongly biased toward Caucasian faces, and other races (e.g., Latino) are significantly underrepresented. The models trained from such datasets suffer from inconsistent classification accuracy, which limits the applicability of face analytic systems to non-White race groups. To mitigate the race bias problem in these datasets, we constructed a novel face image dataset containing 108,501 images which is balanced on race. We define 7 race groups: White, Black, Indian, East Asian, Southeast Asian, Middle Eastern, and Latino. Images were collected from the YFCC-100M Flickr dataset and labeled with race, gender, and age groups. Evaluations were performed on existing face attribute datasets as well as novel image datasets to measure the generalization performance. We find that the model trained from our dataset is substantially more accurate on novel datasets and the accuracy is consistent across race and gender groups. We also compare several commercial computer vision APIs and report their balanced accuracy across gender, race, and age groups. Our code, data, and models are available at https://github.com/joojs/fairface. 
    more » « less
  3. Abstract. Classifying objects within aerial Light Detection and Ranging (LiDAR) data is an essential task to which machine learning (ML) is applied increasingly. ML has been shown to be more effective on LiDAR than imagery for classification, but most efforts have focused on imagery because of the challenges presented by LiDAR data. LiDAR datasets are of higher dimensionality, discontinuous, heterogenous, spatially incomplete, and often scarce. As such, there has been little examination into the fundamental properties of the training data required for acceptable performance of classification models tailored for LiDAR data. The quantity of training data is one such crucial property, because training on different sizes of data provides insight into a model’s performance with differing data sets. This paper assesses the impact of training data size on the accuracy of PointNet, a widely used ML approach for point cloud classification. Subsets of ModelNet ranging from 40 to 9,843 objects were validated on a test set of 400 objects. Accuracy improved logarithmically; decelerating from 45 objects onwards, it slowed significantly at a training size of 2,000 objects, corresponding to 20,000,000 points. This work contributes to the theoretical foundation for development of LiDAR-focused models by establishing a learning curve, suggesting the minimum quantity of manually labelled data necessary for satisfactory classification performance and providing a path for further analysis of the effects of modifying training data characteristics. 
    more » « less
  4. Abstract The computational identification of long non-coding RNAs (lncRNAs) is important to study lncRNAs and their functions. Despite the existence of many computation tools for lncRNA identification, to our knowledge, there is no systematic evaluation of these tools on common datasets and no consensus regarding their performance and the importance of the features used. To fill this gap, in this study, we assessed the performance of 17 tools on several common datasets. We also investigated the importance of the features used by the tools. We found that the deep learning-based tools have the best performance in terms of identifying lncRNAs, and the peptide features do not contribute much to the tool accuracy. Moreover, when the transcripts in a cell type were considered, the performance of all tools significantly dropped, and the deep learning-based tools were no longer as good as other tools. Our study will serve as an excellent starting point for selecting tools and features for lncRNA identification. 
    more » « less
  5. Abstract BackgroundMagnetic resonance imaging (MRI) scans are known to suffer from a variety of acquisition artifacts as well as equipment‐based variations that impact image appearance and segmentation performance. It is still unclear whether a direct relationship exists between magnetic resonance (MR) image quality metrics (IQMs) (e.g., signal‐to‐noise, contrast‐to‐noise) and segmentation accuracy. PurposeDeep learning (DL) approaches have shown significant promise for automated segmentation of brain tumors on MRI but depend on the quality of input training images. We sought to evaluate the relationship between IQMs of input training images and DL‐based brain tumor segmentation accuracy toward developing more generalizable models for multi‐institutional data. MethodsWe trained a 3D DenseNet model on the BraTS 2020 cohorts for segmentation of tumor subregions enhancing tumor (ET), peritumoral edematous, and necrotic and non‐ET on MRI; with performance quantified via a 5‐fold cross‐validated Dice coefficient. MRI scans were evaluated through the open‐source quality control tool MRQy, to yield 13 IQMs per scan. The Pearson correlation coefficient was computed between whole tumor (WT) dice values and IQM measures in the training cohorts to identify quality measures most correlated with segmentation performance. Each selected IQM was used to group MRI scans as “better” quality (BQ) or “worse” quality (WQ), via relative thresholding. Segmentation performance was re‐evaluated for the DenseNet model when (i) training on BQ MRI images with validation on WQ images, as well as (ii) training on WQ images, and validation on BQ images. Trends were further validated on independent test sets derived from the BraTS 2021 training cohorts. ResultsFor this study, multimodal MRI scans from the BraTS 2020 training cohorts were used to train the segmentation model and validated on independent test sets derived from the BraTS 2021 cohort. Among the selected IQMs, models trained on BQ images based on inhomogeneity measurements (coefficient of variance, coefficient of joint variation, coefficient of variation of the foreground patch) and the models trained on WQ images based on noise measurement peak signal‐to‐noise ratio (SNR) yielded significantly improved tumor segmentation accuracy compared to their inverse models. ConclusionsOur results suggest that a significant correlation may exist between specific MR IQMs and DenseNet‐based brain tumor segmentation performance. The selection of MRI scans for model training based on IQMs may yield more accurate and generalizable models in unseen validation. 
    more » « less