skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ICXML: An In-Context Learning Framework for Zero-Shot Extreme Multi-Label Classification
This paper focuses on the task of Extreme Multi-Label Classification (XMC) whose goal is to predict multiple labels for each instance from an extremely large label space. While existing research has primarily focused on fully supervised XMC, real-world scenarios often lack supervision signals, highlighting the im- portance of zero-shot settings. Given the large label space, utilizing in-context learning approaches is not trivial. We address this issue by introducing In-Context Extreme Multi-label Learning (ICXML), a two-stage framework that cuts down the search space by generating a set of candidate labels through in-context learning and then reranks them. Extensive experiments suggest that ICXML advances the state of the art on two diverse public benchmarks.  more » « less
Award ID(s):
2106282
PAR ID:
10542778
Author(s) / Creator(s):
;
Publisher / Repository:
Findings of the Association for Computational Linguistics: Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024)
Date Published:
ISBN:
979-8-89176-119-3
Page Range / eLocation ID:
2086-2098
Format(s):
Medium: X
Location:
Mexico City, Mexico
Sponsoring Org:
National Science Foundation
More Like this
  1. Many discriminative natural language understanding (NLU) tasks have large label spaces. Learning such a process of large-space decision making is particularly challenging due to the lack of training instances per label and the difficulty of selection among many fine-grained labels. Inspired by dense retrieval methods for passage finding in open-domain QA, we propose a reformulation of large-space discriminative NLU tasks as a learning-to-retrieve task, leading to a novel solution named Dense Decision Retrieval (DDR). Instead of predicting fine-grained decisions as logits, DDR adopts a dual-encoder architecture that learns to predict by retrieving from a decision thesaurus. This approach not only leverages rich indirect supervision signals from easy-to-consume learning resources for dense retrieval, it also leads to enhanced prediction generalizability with a semantically meaningful representation of the large decision space. When evaluated on tasks with decision spaces ranging from hundreds to hundred-thousand scales, DDR outperforms strong baselines greatly by 27.54% in P @1 on two extreme multi-label classification tasks, 1.17% in F1 score ultra-fine entity typing, and 1.26% in accuracy on three few-shot intent classification tasks on average. 
    more » « less
  2. null (Ed.)
    Multi-label text classification refers to the problem of assigning each given document its most relevant labels from a label set. Commonly, the metadata of the given documents and the hierarchy of the labels are available in real-world applications. However, most existing studies focus on only modeling the text information, with a few attempts to utilize either metadata or hierarchy signals, but not both of them. In this paper, we bridge the gap by formalizing the problem of metadata-aware text classification in a large label hierarchy (e.g., with tens of thousands of labels). To address this problem, we present the MATCH solution—an end-to-end framework that leverages both metadata and hierarchy information. To incorporate metadata, we pre-train the embeddings of text and metadata in the same space and also leverage the fully-connected attentions to capture the interrelations between them. To leverage the label hierarchy, we propose different ways to regularize the parameters and output probability of each child label by its parents. Extensive experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH over the state-of-the-art deep learning baselines. 
    more » « less
  3. Multi-label annotation is challenging since a large amount of well-labeled training data are required to achieve promising performance. However, providing such data is expensive while unlabeled data are widely available. To this end, we propose a novel Adaptive Graph Guided Embedding (AG2E) approach for multi-label annotation in a semi-supervised fashion, which utilizes limited labeled data associating with large-scale unlabeled data to facilitate learning performance. Specifically, a multi-label propagation scheme and an effective embedding are jointly learned to seek a latent space where unlabeled instances tend to be well assigned multiple labels. Furthermore, a locality structure regularizer is designed to preserve the intrinsic structure and enhance the multi-label annotation. We evaluate our model in both conventional multi-label learning and zero-shot learning scenario. Experimental results demonstrate that our approach outperforms other compared state-of-the-art methods. 
    more » « less
  4. Recent years have witnessed increasing concerns towards unfair decisions made by machine learning algorithms. To improve fairness in model decisions, various fairness notions have been proposed and many fairness-aware methods are developed. However, most of existing definitions and methods focus only on single-label classification. Fairness for multi-label classification, where each instance is associated with more than one labels, is still yet to establish. To fill this gap, we study fairness-aware multi-label classification in this paper. We start by extending Demographic Parity (DP) and Equalized Opportunity (EOp), two popular fairness notions, to multi-label classification scenarios. Through a systematic study, we show that on multi-label data, because of unevenly distributed labels, EOp usually fails to construct a reliable estimate on labels with few instances. We then propose a new framework named Similarity s-induced Fairness (sγ -SimFair). This new framework utilizes data that have similar labels when estimating fairness on a particular label group for better stability, and can unify DP and EOp. Theoretical analysis and experimental results on real-world datasets together demonstrate the advantage of sγ -SimFair over existing methods on multi-label classification tasks. 
    more » « less
  5. The eXtreme Multi-label Classification (XMC) problem seeks to find relevant labels from an exceptionally large label space. Most of the existing XMC learners focus on the extraction of semantic features from input query text. However, conventional XMC studies usually neglect the side information of instances and labels, which can be of use in many real-world applications such as recommendation systems and e-commerce product search. We propose Predicted Instance Neighborhood Aggregation (PINA), a data enhancement method for the general XMC problem that leverages beneficial side information. Unlike most existing XMC frameworks that treat labels and input instances as featureless indicators and independent entries, PINA extracts information from the label metadata and the correlations among training instances. Extensive experimental results demonstrate the consistent gain of PINA on various XMC tasks compared to the state-of-the-art methods: PINA offers a gain in accuracy compared to standard XR-Transformers on five public benchmark datasets. Moreover, PINA achieves a ∼ 5% gain in accuracy on the largest dataset LF-AmazonTitles-1.3M. Our implementation is publicly available https://github.com/amzn/pecos/ tree/mainline/examples/pina. 
    more » « less