skip to main content

Title: Adaptive Graph Guided Embedding for Multi-label Annotation

Multi-label annotation is challenging since a large amount of well-labeled training data are required to achieve promising performance. However, providing such data is expensive while unlabeled data are widely available. To this end, we propose a novel Adaptive Graph Guided Embedding (AG2E) approach for multi-label annotation in a semi-supervised fashion, which utilizes limited labeled data associating with large-scale unlabeled data to facilitate learning performance. Specifically, a multi-label propagation scheme and an effective embedding are jointly learned to seek a latent space where unlabeled instances tend to be well assigned multiple labels. Furthermore, a locality structure regularizer is designed to preserve the intrinsic structure and enhance the multi-label annotation. We evaluate our model in both conventional multi-label learning and zero-shot learning scenario. Experimental results demonstrate that our approach outperforms other compared state-of-the-art methods.

Authors:
; ;
Award ID(s):
1651902
Publication Date:
NSF-PAR ID:
10065421
Journal Name:
IJCAI
Page Range or eLocation-ID:
2798 to 2804
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we show that for a nontrivial hypothesis class C, we can estimate the distance of a target function f to C (estimate the error rate of the best h∈C) using substantially fewer labeled examples than would be needed to actually {\em learn} a good h∈C. Specifically, we show that for the class C of unions of d intervals on the line, in the active learning setting in which we have access to a pool of unlabeled examples drawn from an arbitrary underlying distribution D, we can estimate the error rate of the best h∈C to an additive error ϵ with a number of label requests that is {\em independent of d} and depends only on ϵ. In particular, we make O((1/ϵ^6)log(1/ϵ)) label queries to an unlabeled pool of size O((d/ϵ^2)log(1/ϵ)). This task of estimating the distance of an unknown f to a given class C is called {\em tolerant testing} or {\em distance estimation} in the testing literature, usually studied in a membership query model and with respect to the uniform distribution. Our work extends that of Balcan et al. (2012) who solved the {\em non}-tolerant testing problem for this class (distinguishing the zero-error case from themore »case that the best hypothesis in the class has error greater than ϵ). We also consider the related problem of estimating the performance of a given learning algorithm A in this setting. That is, given a large pool of unlabeled examples drawn from distribution D, can we, from only a few label queries, estimate how well A would perform if the entire dataset were labeled and given as training data to A? We focus on k-Nearest Neighbor style algorithms, and also show how our results can be applied to the problem of hyperparameter tuning (selecting the best value of k for the given learning problem).« less
  2. Abstract Background

    Natural language processing (NLP) tasks in the health domain often deal with limited amount of labeled data due to high annotation costs and naturally rare observations. To compensate for the lack of training data, health NLP researchers often have to leverage knowledge and resources external to a task at hand. Recently, pretrained large-scale language models such as the Bidirectional Encoder Representations from Transformers (BERT) have been proven to be a powerful way of learning rich linguistic knowledge from massive unlabeled text and transferring that knowledge to downstream tasks. However, previous downstream tasks often used training data at such a large scale that is unlikely to obtain in the health domain. In this work, we aim to study whether BERT can still benefit downstream tasks when training data are relatively small in the context of health NLP.

    Method

    We conducted a learning curve analysis to study the behavior of BERT and baseline models as training data size increases. We observed the classification performance of these models on two disease diagnosis data sets, where some diseases are naturally rare and have very limited observations (fewer than 2 out of 10,000). The baselines included commonly used text classification models such as sparse andmore »dense bag-of-words models, long short-term memory networks, and their variants that leveraged external knowledge. To obtain learning curves, we incremented the amount of training examples per disease from small to large, and measured the classification performance in macro-averaged$$F_{1}$$F1score.

    Results

    On the task of classifying all diseases, the learning curves of BERT were consistently above all baselines, significantly outperforming them across the spectrum of training data sizes. But under extreme situations where only one or two training documents per disease were available, BERT was outperformed by linear classifiers with carefully engineered bag-of-words features.

    Conclusion

    As long as the amount of training documents is not extremely few, fine-tuning a pretrained BERT model is a highly effective approach to health NLP tasks like disease classification. However, in extreme cases where each class has only one or two training documents and no more will be available, simple linear models using bag-of-words features shall be considered.

    « less
  3. We propose a semi-supervised learning approach for video classification, VideoSSL, using convolutional neural networks (CNN). Like other computer vision tasks, existing supervised video classification methods demand a large amount of labeled data to attain good performance. However, annotation of a large dataset is expensive and time consuming. To minimize the dependence on a large annotated dataset, our proposed semi-supervised method trains from a small number of labeled examples and exploits two regulatory signals from unlabeled data. The first signal is the pseudo-labels of unlabeled examples computed from the confidences of the CNN being trained. The other is the normalized probabilities, as predicted by an image classifier CNN, that captures the information about appearances of the interesting objects in the video. We show that, under the supervision of these guiding signals from unlabeled examples, a video classification CNN can achieve impressive performances utilizing a small fraction of annotated examples on three publicly available datasets: UCF101, HMDB51, and Kinetics.
  4. Inspired by the extensive success of deep learning, graph neural networks (GNNs) have been proposed to learn expressive node representations and demonstrated promising performance in various graph learning tasks. However, existing endeavors predominately focus on the conventional semi-supervised setting where relatively abundant gold-labeled nodes are provided. While it is often impractical due to the fact that data labeling is unbearably laborious and requires intensive domain knowledge, especially when considering the heterogeneity of graph-structured data. Under the few-shot semi-supervised setting, the performance of most of the existing GNNs is inevitably undermined by the overfitting and oversmoothing issues, largely owing to the shortage of labeled data. In this paper, we propose a decoupled network architecture equipped with a novel meta-learning algorithm to solve this problem. In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy, which effectively augments the scarce labeled data while enabling large receptive fields during training. Extensive experiments demonstrate that our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets. The implementation and extended manuscript of this work are publicly available at https://github.com/kaize0409/Meta-PN.
  5. Abstract Motivation

    Computational methods for compound–protein affinity and contact (CPAC) prediction aim at facilitating rational drug discovery by simultaneous prediction of the strength and the pattern of compound–protein interactions. Although the desired outputs are highly structure-dependent, the lack of protein structures often makes structure-free methods rely on protein sequence inputs alone. The scarcity of compound–protein pairs with affinity and contact labels further limits the accuracy and the generalizability of CPAC models.

    Results

    To overcome the aforementioned challenges of structure naivety and labeled-data scarcity, we introduce cross-modality and self-supervised learning, respectively, for structure-aware and task-relevant protein embedding. Specifically, protein data are available in both modalities of 1D amino-acid sequences and predicted 2D contact maps that are separately embedded with recurrent and graph neural networks, respectively, as well as jointly embedded with two cross-modality schemes. Furthermore, both protein modalities are pre-trained under various self-supervised learning strategies, by leveraging massive amount of unlabeled protein data. Our results indicate that individual protein modalities differ in their strengths of predicting affinities or contacts. Proper cross-modality protein embedding combined with self-supervised learning improves model generalizability when predicting both affinities and contacts for unseen proteins.

    Availability and implementation

    Data and source codes are available at https://github.com/Shen-Lab/CPAC.

    Supplementary information

    Supplementary data aremore »available at Bioinformatics online.

    « less