skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lepton flavor violation by two units
Charged lepton flavor violation arises in the Standard Model Effective Field Theory at mass dimension six. The operators that induce neutrinoless muon and tauon decays are among the best constrained and are sensitive to new-physics scales up to 107GeV. An entirely different class of lepton-flavor-violating operators violates lepton flavors by two units rather than one and does not lead to such clean signatures. Even the well-known case of muonium--anti-muonium conversion that falls into this category is only sensitive to two out of the three ΔLμ=−ΔLe=2 dimension-six operators. We derive constraints on many of these operators from lepton flavor universality and show how to make further progress with future searches at Belle II and future experiments such as Z factories or muon colliders.  more » « less
Award ID(s):
2210428
PAR ID:
10542809
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Physics Letters B
Volume:
852
Issue:
C
ISSN:
0370-2693
Page Range / eLocation ID:
138621
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    A<sc>bstract</sc> Observation of lepton number violation would represent a groundbreaking discovery with profound consequences for fundamental physics and as such, it has motivated an extensive experimental program searching for neutrinoless double beta decay. However, the violation of lepton number can be also tested by a variety of other observables. We focus on the possibilities of probing this fundamental symmetry within the framework of the Standard Model Effective Field Theory (SMEFT) beyond the minimal dimension-5. Specifically, we study the bounds on ∆L= 2 dimension-7 effective operators beyond the electron flavor imposed by all relevant low-energy observables and confront them with derived high-energy collider limits. We also discuss how the synergy of the analyzed multi-frontier observables can play a crucial role in distinguishing among different dimension-7 SMEFT operators. 
    more » « less
  2. The cores of dense stars are a powerful laboratory for studying feebly coupled particles such as axions. Some of the strongest constraints on axionlike particles and their couplings to ordinary matter derive from considerations of stellar axion emission. In this work we study the radiation of axionlike particles from degenerate neutron star matter via a lepton-flavor-violating coupling that leads to muon-electron conversion when an axion is emitted. We calculate the axion emission rate per unit volume (emissivity) and by comparing with the rate of neutrino emission, we infer upper limits on the lepton-flavor-violating coupling that are at the level of | g a e μ | 10 6 . For the hotter environment of a supernova, such as SN 1987A, the axion emission rate is enhanced and the limit is stronger, at the level of | g a e μ | 10 11 , competitive with laboratory limits. Interestingly, our derivation of the axion emissivity reveals that axion emission via the lepton-flavor-violating coupling is suppressed relative to the familiar lepton-flavor-preserving channels by the square of the plasma temperature to muon mass ratio, which is responsible for the relatively weaker limits. Published by the American Physical Society2024 
    more » « less
  3. Flavor physics continues to be an interesting avenue to look for beyond the standard model (SM) physics. Recent results from flavor physics, both in the quark and lepton sectors, hint at possible new physics. In this work we focus on some flavor physics results, mainly in b decays, and speculate on possible new physics interpretations of these results. We also present a model that can connect some of the B anomalies to the MiniBooNe anomaly and the muon g − 2 measurement. 
    more » « less
  4. We study a lepton-flavored dark matter model and its signatures at a future muon collider. We focus on the less-explored regime of feeble dark matter interactions, which suppresses the dangerous lepton-flavor-violating processes, gives rise to dark matter freeze-in production, and leads to long-lived particle signatures at colliders. We find that the interplay of dark matter freeze-in and its mediator freeze-out gives rise to an upper bound of around TeV scales on the dark matter mass. The signatures of this model depend on the lifetime of the mediator and can range from generic prompt decays to more exotic long-lived particle signals. In the prompt region, we calculate the signal yield, study useful kinematics cuts, and report tolerable systematics that would allow for a 5 σ discovery. In the long-lived region, we calculate the number of charged tracks and displaced lepton signals of our model in different parts of the detector and uncover kinematic features that can be used for background rejection. We show that, unlike in hadron colliders, multiple production channels contribute significantly, which leads to sharply distinct kinematics for electroweakly charged long-lived particle signals. Ultimately, the collider signatures of this lepton-flavored dark matter model are common among models of electroweak-charged new physics, rendering this model a useful and broadly applicable benchmark model for future muon collider studies that can help inform work on detector design and studies of systematics. Published by the American Physical Society2024 
    more » « less
  5. A<sc>bstract</sc> We perform a model-independent analysis of the dimension-six terms that are generated in the low energy effective theory when a hidden sector that communicates with the Standard Model (SM) through a specific portal operator is integrated out. We work within the Standard Model Effective Field Theory (SMEFT) framework and consider the Higgs, neutrino and hypercharge portals. We find that, for each portal, the forms of the leading dimension-six terms in the low-energy effective theory are fixed and independent of the dynamics in the hidden sector. For the Higgs portal, we find that two independent dimension-six terms are generated, one of which has a sign that, under certain conditions, is fixed by the requirement that the dynamics in the hidden sector be causal and unitary. In the case of the neutrino portal, for a single generation of SM fermions and assuming that the hidden sector does not violate lepton number, a unique dimension-six term is generated, which corresponds to a specific linear combination of operators in the Warsaw basis. For the hypercharge portal, a unique dimension-six term is generated, which again corresponds to a specific linear combination of operators in the Warsaw basis. For both the neutrino and hypercharge portals, under certain conditions, the signs of these terms are fixed by the requirement that the hidden sector be causal and unitary. We perform a global fit of these dimension-six terms to electroweak precision observables, Higgs measurements and diboson production data and determine the current bounds on their coefficients. 
    more » « less