skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A general expression for vibrational Hamiltonians expressed in oblique coordinates
We examine the properties of oblique coordinates. The coordinates, introduced by Zúñiga et al. [J. Phys. B: At., Mol. Opt. Phys. 52, 055101, (2019)], reduce vibrational mode-mixing and enhance the quality of vibrational assignments in quantum mechanical investigations of two-dimensional model Hamiltonians. Oblique coordinates are obtained by making non-orthogonal rotations of the original coordinates that convert the matrix representation of the quadratic Hamiltonian operator into a block-diagonal matrix where the blocks are distinguished by the total quanta of vibrational excitation. Using techniques for the polar decomposition of matrices, we present a scheme for finding these coordinates for systems of arbitrary dimensions. Several molecular examples are presented that highlight the advantages of these coordinates.  more » « less
Award ID(s):
1900095
PAR ID:
10542814
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Chemical Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
23
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We developed a multi-level theory for description of the intricate isotope effect in ozone. At 0th level of theory the role of molecular symmetry is taken into account. Although the important factors of 1/2 appear in seven different places in the formalism, this level of theory does not lead to any isotope effect. At the 1st level the effect of atomic masses is introduced to elucidate the roles of vibrational zero-point energies and rotational excitations. It is found that averaging over thermal distribution smooths isotopic differences and leads to a small net effect. At the 2nd level the process is assumed to proceed through independent diabatic ro-vibrational channels, which permits to determine contribution of shape resonances populated by tunneling. Resultant isotope effects do not look like experiment and the rate coefficient is too small. At the 3rd level the role of Feshbach resonances is determined, by accurate close-coupling calculations using hyper-spherical coordinates, adaptive grids, sequential diagonalization truncation technique and complex absorbing potential. Comparison with experiment is presented. Refs: J. Phys. Chem. A 122, 9177 (2018); J. Chem. Phys. 149, 164302 (2018). 
    more » « less
  2. Abstract We present a theory that explains the resonance effect of the vibrational strong coupling (VSC) modified reaction rate constant at the normal incidence of a Fabry–Pérot (FP) cavity. This analytic theory is based on a mechanistic hypothesis that cavity modes promote the transition from the ground state to the vibrational excited state of the reactant, which is the rate-limiting step of the reaction. This mechanism for a single molecule coupled to a single-mode cavity has been confirmed by numerically exact simulations in our recent work in [J. Chem. Phys. 159, 084104 (2023)]. Using Fermi’s golden rule (FGR), we formulate this rate constant for many molecules coupled to many cavity modes inside a FP microcavity. The theory provides a possible explanation for the resonance condition of the observed VSC effect and a plausible explanation of why only at the normal incident angle there is the resonance effect, whereas, for an oblique incidence, there is no apparent VSC effect for the rate constant even though both cases generate Rabi splitting and forming polariton states. On the other hand, the current theory cannot explain the collective effect when a large number of molecules are collectively coupled to the cavity, and future work is required to build a complete microscopic theory to explain all observed phenomena in VSC. 
    more » « less
  3. We present the computational methodology, which for the first time allows rigorous twelve-dimensional (12D) quantum calculations of the coupled intramolecular and intermolecular vibrational states of hydrogen-bonded trimers of flexible diatomic molecules. Its starting point is the approach that we introduced recently for fully coupled 9D quantum calculations of the intermolecular vibrational states of noncovalently bound trimers comprised of diatomics treated as rigid. In this paper, it is extended to include the intramolecular stretching coordinates of the three diatomic monomers. The cornerstone of our 12D methodology is the partitioning of the full vibrational Hamiltonian of the trimer into two reduced-dimension Hamiltonians, one in 9D for the intermolecular degrees of freedom (DOFs) and another in 3D for the intramolecular vibrations of the trimer, and a remainder term. These two Hamiltonians are diagonalized separately, and a fraction of their respective 9D and 3D eigenstates is included in the 12D product contracted basis for both the intra- and intermolecular DOFs, in which the matrix of the full 12D vibrational Hamiltonian of the trimer is diagonalized. This methodology is implemented in the 12D quantum calculations of the coupled intra- and intermolecular vibrational states of the hydrogen-bonded HF trimer on an ab initio calculated potential energy surface (PES). The calculations encompass the one- and two-quanta intramolecular HF-stretch excited vibrational states of the trimer and low-energy intermolecular vibrational states in the intramolecular vibrational manifolds of interest. They reveal several interesting manifestations of significant coupling between the intra- and intermolecular vibrational modes of (HF)3. The 12D calculations also show that the frequencies of the v = 1, 2 HF stretching states of the HF trimer are strongly redshifted in comparison to those of the isolated HF monomer. Moreover, the magnitudes of these trimer redshifts are much larger than that of the redshift for the stretching fundamental of the donor-HF moiety in (HF)2, most likely due to the cooperative hydrogen bonding in (HF)3. The agreement between the 12D results and the limited spectroscopic data for the HF trimer, while satisfactory, leaves room for improvement and points to the need for a more accurate PES. 
    more » « less
  4. We present fully coupled, full-dimensional quantum calculations of the inter- and intra-molecular vibrational states of HCl trimer, a paradigmatic hydrogen-bonded molecular trimer. They are performed utilizing the recently developed methodology for the rigorous 12D quantum treatment of the vibrations of the noncovalently bound trimers of flexible diatomic molecules [Felker and Bačić, J. Chem. Phys. 158, 234109 (2023)], which was previously applied to the HF trimer by us. In this work, the many-body 12D potential energy surface (PES) of (HCl)3 [Mancini and Bowman, J. Phys. Chem. A 118, 7367 (2014)] is employed. The calculations extend to the intramolecular HCl-stretch excited vibrational states of the trimer with one- and two-quanta, together with the low-energy intermolecular vibrational states in the two excited v = 1 intramolecular vibrational manifolds. They reveal significant coupling between the intra- and inter-molecular vibrational modes. The 12D calculations also show that the frequencies of the v = 1 HCl stretching states of the HCl trimer are significantly redshifted relative to those of the isolated HCl monomer. Detailed comparison is made between the results of the 12D calculations on the two-body PES, obtained by removing the three-body term from the original 2 + 3-body PES, and those computed on the 2 + 3-body PES. It demonstrates that the three-body interactions have a strong effect on the trimer binding energy as well as on its intra- and inter-molecular vibrational energy levels. Comparison with the available spectroscopic data shows that good agreement with the experiment is achieved only if the three-body interactions are included. Some low-energy vibrational states localized in a secondary minimum of the PES are characterized as well. 
    more » « less
  5. The dynamics of molecular excitonic systems are complicated by a competition between electronic coupling (which drives delocalization) and vibrational-electronic (vibronic) interactions (which tend to encourage electronic localization). A particular challenge of molecular systems is that they typically possess a large number of independent vibrations, with frequencies often spanning the entire spectrum of relevant electronic energy gaps. Recent spectroscopic observations and numerical simulations on a water-soluble chlorophyll-binding protein (WSCP) reveal a transition between two regimes of vibronic behavior, a Redfield-like regime in which low-frequency vibrations respond to a delocalized excitonic state, and a Förster-like regime where high-frequency vibrations act as incoherent excitations on individual pigments. Although numerical simulations can reproduce these effects, there is a need for a simple, systematic theory that accurately describes the smooth transition between these two regimes in experimental spectra. Here we address this challenge by generalizing the variational polaron transform approach of [Bloemsma et al., Chem. Phys. 481, 250 (2016)] to include arbitrary bath densities for systems with or without symmetry. We benchmark this theory against both numerical matrix-diagonalization methods and experimental 77 K fluorescence spectra for two WSCP variants, obtaining quite satisfactory agreement in both cases. We apply this theory to offer an explanation for the large loss in apparent electronic coupling in the WSCP Q57K mutant and to examine the likely impact of the interplay between excitonic delocalization and vibrational localization on vibrational sideband shapes and apparent coupling strengths in high-resolution optical spectra for chlorophyll-protein complexes such as WSCP. 
    more » « less