The planktonic copepod Calanus finmarchicus is a fundamental prey resource for the critically endangered North Atlantic right whale Eubalaena glacialis . Incorporation of prey information into E. gla cialis decision support tools could improve management. Zooplankton time series are usually analyzed with respect to abundance, but predators such as E. glacialis forage based on whether prey aggregations exceed energetic thresholds. In order to better understand the distribution and dynamics of the high-abundance end of C. finmarchicus on the northeastern US continental shelf, where E. glacialis feed, we modeled the environmental conditions associated with C. finmarchicus densities that exceed nominal feeding thresholds. Threshold values were chosen based on a review of E. glacialis feeding behavior throughout the domain. Following model selection procedures, we used a random forest model with bathymetry, bottom temperature, bottom salinity, day of year, sea surface temperature, sea surface temperature gradient, bathymetric slope, time-integrated chlorophyll, current velocity gradient, and wind covariates. Model performance was highest with thresholds that matched reported E. glacialis feeding thresholds equivalent to 10000 copepods m -2 . The high-density aggregations of C. finmarchicus had some different covariate responses compared to previous statistical abundance models, such as a warmer temperature range at both the surface and at depth, as well as a much higher degree of spatial variability. The output data layers of the model are designed to link with E. glacialis models used in US governmental decision support tools. Including this type of foraging information in decision support tools is a step forward in managing this critically endangered species.
more »
« less
This content will become publicly available on May 20, 2026
Suitability of foraging habitat for Eubalaena glacialis under future climate scenarios in the Northwest Atlantic
The critically endangered North Atlantic right whale (Eubalaena glacialis) faces significant anthropogenic mortality. Recent climatic shifts in traditional habitats have caused abrupt changes in right whale distributions, challenging traditional conservation strategies. Tools that can help anticipate new areas where E. glacialis might forage could inform proactive management. In this study, we trained boosted regression tree algorithms with fine-resolution modeled environmental covariates to build prey copepod (Calanus) species-specific models of historical and future distributions of E. glacialis foraging habitat on the Northwest Atlantic Shelf, from the Mid-Atlantic Bight to the Labrador Shelf. We determined foraging suitability using E. glacialis foraging thresholds for Calanus spp. adjusted by a bathymetry-dependent bioenergetic correction factor based on known foraging behavior constraints. Models were then projected to 2046–2065 and 2066–2085 modeled climatologies for representative concentration pathway scenarios RCP 4.5 and RCP 8.5 with the goal of identifying potential shifts in foraging habitat. The models had generally high performance (area under the receiver operating characteristic curve > 0.9) and indicated ocean bottom conditions and bathymetry as important covariates. Historical (1990–2015) projections aligned with known areas of high foraging habitat suitability as well as potential suitable areas on the Labrador Shelf. Future projections suggested that the suitability of potential foraging habitat would decrease in parts of the Gulf of Maine and southwestern Gulf of Saint Lawrence, while potential habitat would be maintained or improved on the western Scotian Shelf, in the Bay of Fundy, on the Newfoundland and Labrador shelves, and at some locations along the continental shelf breaks. Overall, suitable habitat is projected to decline. Directing some survey efforts toward emerging potential foraging habitats can enable conservation management to anticipate the type of distribution shifts that have led to high mortality in the past.
more »
« less
- Award ID(s):
- 2307754
- PAR ID:
- 10603976
- Publisher / Repository:
- University of California Press
- Date Published:
- Journal Name:
- Elem Sci Anth
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2325-1026
- Subject(s) / Keyword(s):
- Calanus, Eubalaena glacialis, North Atlantic right whale, Climate scenario, Model
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ocean warming linked to anthropogenic climate change is impacting the ecology of marine species around the world. In 2010, the Gulf of Maine and Scotian Shelf regions of the Northwest Atlantic underwent an unprecedented regime shift. Forced by climate-driven changes in the Gulf Stream, warm slope waters entered the region and created a less favorable foraging environment for the endangered North Atlantic right whale population. By mid-decade, right whales had shifted their late spring/summer foraging grounds from the Gulf of Maine and the western Scotian Shelf to the Gulf of St. Lawrence. The population also began exhibiting unusually high mortality in 2017. Here, we report that climate-driven changes in ocean circulation have altered the foraging environment and habitat use of right whales, reducing the population’s calving rate and exposing it to greater mortality risks from ship strikes and fishing gear entanglement. The case of the North Atlantic right whale provides a cautionary tale for the management of protected species in a changing ocean.more » « less
-
North Atlantic right whalesEubalaena glacialishave been observed feeding in Cape Cod Bay (CCB) for over 8 decades, making CCB the most consistent known feeding habitat under shifting ocean and climate conditions. Determining the composition of the right whales’ prey resource in a stable feeding habitat during a period of environmental change will inform conservation efforts throughout their habitat range. We compared zooplankton sampled in the paths of skim-feeding right whales to the bay-wide zooplankton resource in CCB over 23 yr. The dominant zooplankton taxa in CCB werePseudocalanuscomplex,Calanus finmarchicus, andCentropagesspp. during the winter/spring seasons. The succession of these 3 dominant taxa—Centropagesspp. toPseudocalanuscomplex (day of the year [DOY] mean ± SD: 34 ± 3) toC. finmarchicus(DOY 92 ± 3)—has provided right whales with a stable, multi-month food resource in a small portion of their greater North Atlantic habitat. We found that right whales targeted aggregations of non-dominant prey groups:Pseudocalanuscomplex andCentropagesspp. aggregations whenCentropagesspp. dominated the bay-wide zooplankton community;Pseudocalanuscomplex patches andC. finmarchicuspatches whenPseudocalanusdominated; and primarilyC. finmarchicuscopepodite stage CIV and CV aggregations when CIII dominated bay-wide abundances. Over the time series, we found thatCentropagesspp. abundance increased andC. finmarchicusdecreased only at the beginning of the season. CCB remains a critical foraging habitat for right whales due to the phenological cycle of their prey and limited inter-annual changes in prey abundance.more » « less
-
Nannothemis bella Uhler, 1857 (Odonata: Libellulidae), the smallest dragonflyin North America, inhabit bogs and sedge fens across their distribution, spanning fromQuebec (Canada) south to Florida and west to Minnesota and Louisiana (USA). While commonin the northern part of their range, N. bella is of conservation concern in the southernpopulations where they are disjunct and rare. Little work has been done on the ecologyand geographic conservation of this species. To fill this knowledge gap, we constructedspecies distribution models (SDMs) to analyze the spatial distribution and climatic nicheof N. bella, define factors in habitat suitability and estimate potential niche shifts underclimate change and inform conservation efforts. Our present-day SDMs indicate the dominantenvironmental elements determining habitat suitability include the proportion of siltin soil, temperature seasonality, percentage of clay and coarse components in soil, and soilclass. Our paleodistribution models show a southern distribution within the last glacialmaximum, with a shift northward 8,326 to 4,200 years ago. Our projected SDMs for 2050under RCP 2.6 and RCP 8.5 predict a significant decrease in habitat suitability throughoutthe entire range of N. bella. As such, N. bella is a species of conservation concern andconservation measures are imperative for its continued existence as a much-needed bioindicatorfor these freshwater ecosystems. Additionally, this ecological knowledge providesthe foundation for identifying population sites from which to collect N. bella for futurepopulation genetic studies.more » « less
-
Abstract Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW;Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.more » « less
An official website of the United States government
