Pink-pigmented facultative methylotrophs have long been studied for their ability to grow on reduced single-carbon (C 1 ) compounds. The C 1 groups that support methylotrophic growth may come from a variety of sources. Here, we describe a group of Methylobacterium strains that can engage in methoxydotrophy: they can metabolize the methoxy groups from several aromatic compounds that are commonly the product of lignin depolymerization. Furthermore, these organisms can utilize the full aromatic ring as a growth substrate, a phenotype that has rarely been described in Methylobacterium . We demonstrated growth on p -hydroxybenzoate, protocatechuate, vanillate, and ferulate in laboratory culture conditions. We also used comparative genomics to explore the evolutionary history of this trait, finding that the capacity for aromatic catabolism is likely ancestral to two clades of Methylobacterium , but has also been acquired horizontally by closely related organisms. In addition, we surveyed the published metagenome data to find that the most abundant group of aromatic-degrading Methylobacterium in the environment is likely the group related to Methylobacterium nodulans , and they are especially common in soil and root environments. The demethoxylation of lignin-derived aromatic monomers in aerobic environments releases formaldehyde, a metabolite that is a potent cellular toxin but that is also a growth substrate for methylotrophs. We found that, whereas some known lignin-degrading organisms excrete formaldehyde as a byproduct during growth on vanillate, Methylobacterium do not. This observation is especially relevant to our understanding of the ecology and the bioengineering of lignin degradation.
more »
« less
5–5 Lignin Linkage Cleavage over Ru: A Density Functional Theory Study
Lignin is the most abundant natural, aromatic-containing biopolymer. Among all the C–C and C–O bonds being cleaved in catalytic fractionation, the 5–5 linkage is the strongest, and its scission requires harsh conditions. Theoretical investigations of the mechanism and kinetics could provide insights into developing better catalysts but are essentially lacking. We perform extensive density functional theory calculations on 2-methoxy-1,1′-biphenyl, a model compound, with various substitutions at all ring locations on Ru(0001). We analyze the competition between the 5–5 bond cleavage and the defunctionalization of the side functional groups at multiple degrees of depolymerization. The role of ring functional groups in the adsorption of lignin oligomers and the 5–5 bond scission and, conversely, the effect of the aromatic group on the −OCH3 decomposition are also discussed. We show that increasing the number of methoxy groups decreases the C–C barrier, and thus, we expect the following depolymerization ranking: grass > softwood > hardwood. While Ru exposes modest 5–5 bond scission reaction barriers from some intermediates, rapid side group chemistry prevents the formation of these intermediates; instead, scission happens most probably from defunctionalized compounds whose C–C scission barriers are high. Our results also expose the existence of multiple Brønsted–Evans–Polanyi relations in the catalytic transformation of biphenyl-based molecules that open up the possibility of modeling depolymerization of large lignin chains.
more »
« less
- Award ID(s):
- 1934887
- PAR ID:
- 10542958
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- ACS Sustainable Chemistry & Engineering
- Volume:
- 9
- Issue:
- 48
- ISSN:
- 2168-0485
- Page Range / eLocation ID:
- 16143 to 16152
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is O -aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol. However, native GcoAB has minimal ability to demethylate syringol (2,6-dimethoxyphenol), the analogous compound that can be produced from sinapyl alcohol-derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway for syringol catabolism has been reported to date. Here we used structure-guided protein engineering to enable microbial syringol utilization with GcoAB. Specifically, a phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active site, and on mutation to smaller amino acids, efficient syringol O -demethylation is achieved. Crystallography indicates that syringol adopts a productive binding pose in the variant, which molecular dynamics simulations trace to the elimination of steric clash between the highly flexible side chain of GcoA-F169 and the additional methoxy group of syringol. Finally, we demonstrate in vivo syringol turnover in Pseudomonas putida KT2440 with the GcoA-F169A variant. Taken together, our findings highlight the significant potential and plasticity of cytochrome P450 aromatic O -demethylases in the biological conversion of lignin-derived aromatic compounds.more » « less
-
Abstract Cupin dioxygenases such as salicylate 1,2‐dioxygense (SDO) perform aromatic C−C bond scission via a 3‐His motif tethered iron cofactor. Here, transient kinetics measurements are used to monitor the catalytic cycle of SDO by using a nitro‐substituted substrate analog, 3‐nitrogentisate. Compared to the natural substrate, the nitro group reduces the enzymatickcatby 500‐fold, thereby facilitating the detection and kinetic characterization of reaction intermediates. Sums and products of reciprocal relaxation times derived from kinetic measurements were found to be linearly dependent on O2concentration, suggesting reversible formation of two distinct intermediates. Dioxygen binding to the metal cofactor takes place with a forward rate of 5.9×103 M−1 s−1: two orders of magnitude slower than other comparable ring‐cleaving dioxygenses. Optical chromophore of the first intermediate is distinct from thein situgenerated SDO Fe(III)−O2⋅−complex but closer to the enzyme‐substrate precursor.more » « less
-
Abstract We investigate solvent effects in the hydrodeoxygenation of 4-propylguaiacol (4PG, 166 amu), a key lignin-derived monomer, over Ru/C catalyst by combinedoperandosynchrotron photoelectron photoion coincidence (PEPICO) spectroscopy and molecular dynamics simulations. With and without isooctane co-feeding, ring-hydrogenated 2-methoxy-4-propylcyclohexanol (172 amu) is the first product, due to the favorable flat adsorption configuration of 4PG on the catalyst surface. In contrast, tetrahydrofuran (THF)—a polar aprotic solvent that is representative of those used for lignin solubilization and upgrading—strongly coordinates to the catalyst surface at the oxygen atom. This induces a local steric hindrance, blocking the flat adsorption of 4PG more effectively, as it needs more Ru sites than the tilted adsorption configuration revealed by molecular dynamics simulations. Therefore, THF suppresses benzene ring hydrogenation, favoring a demethoxylation route that yields 4-propylphenol (136 amu), followed by dehydroxylation to propylbenzene (120 amu). Solvent selection may provide new avenues for controlling catalytic selectivity.more » « less
-
Lignin depolymerization to aromatic monomers with high yields and selectivity is essential for the economic feasibility of many lignin-valorization strategies within integrated biorefining processes. Importantly, the quality and properties of the lignin source play an essential role in impacting the conversion chemistry, yet this relationship between lignin properties and lignin susceptibility to depolymerization is not well established. In this study, we quantitatively demonstrate how the detrimental effect of a pretreatment process on the properties of lignins, particularly β-O-4 content, limit high yields of aromatic monomers using three lignin depolymerization approaches: thioacidolysis, hydrogenolysis, and oxidation. Through pH-based fractionation of alkali-solubilized lignin from hybrid poplar, this study demonstrates that the properties of lignin, namely β-O-4 linkages, phenolic hydroxyl groups, molecular weight, and S/G ratios exhibit strong correlations with each other even after pretreatment. Furthermore, the differences in these properties lead to discernible trends in aromatic monomer yields using the three depolymerization techniques. Based on the interdependency of alkali lignin properties and its susceptibility to depolymerization, a model for the prediction of monomer yields was developed and validated for depolymerization by quantitative thioacidolysis. These results highlight the importance of the lignin properties for their suitability for an ether-cleaving depolymerization process, since the theoretical monomer yields grows as a second order function of the β-O-4 content. Therefore, this research encourages and provides a reference tool for future studies to identify new methods for lignin-first biomass pretreatment and lignin valorization that emphasize preservation of lignin qualities, apart from focusing on optimization of reaction conditions and catalyst selection.more » « less
An official website of the United States government

