skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shedding Light on the Origin of Pb204 , the Heaviest s -Process–Only Isotope in the Solar System
Asymptotic giant branch stars are responsible for the production of most of the heavy isotopes beyond Sr observed in the solar system. Among them, isotopes shielded from the r -process contribution by their stable isobars are defined as s -only nuclei. For a long time the abundance of Pb 204 , the heaviest s -only isotope, has been a topic of debate because state-of-the-art stellar models appeared to systematically underestimate its solar abundance. Besides the impact of uncertainties from stellar models and galactic chemical evolution simulations, this discrepancy was further obscured by rather divergent theoretical estimates for the neutron capture cross section of its radioactive precursor in the neutron-capture flow, Tl 204 ( t 1 / 2 = 3.78 yr ), and by the lack of experimental data on this reaction. We present the first ever neutron capture measurement on Tl 204 , conducted at the CERN neutron time-of-flight facility n_TOF, employing a sample of only 9 mg of Tl 204 produced at the Institute Laue Langevin high flux reactor. By complementing our new results with semiempirical calculations we obtained, at the s -process temperatures of k T 8 keV and k T 30 keV , Maxwellian-averaged cross sections (MACS) of 580(168) mb and 260(90) mb, respectively. These figures are about 3% lower and 20% higher than the corresponding values widely used in astrophysical calculations, which were based only on theoretical calculations. By using the new Tl 204 MACS, the uncertainty arising from the Tl 204 ( n , γ ) cross section on the s -process abundance of Pb 204 has been reduced from 30 % down to + 8 % / 6 % , and the s -process calculations are in agreement with the latest solar system abundance of Pb 204 reported by K. Lodders in 2021. Published by the American Physical Society2024  more » « less
Award ID(s):
1927130
PAR ID:
10543045
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
133
Issue:
5
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of Pb 208 nuclei in the ALICE experiment at the Large Hadron Collider are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron zero degree calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral Pb 208 Pb 208 collisions at a center-of-mass energy per nucleon pair s N N = 5.02 TeV . The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17–25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of Pb 208 . The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes Tl 206 , 205 , 204 . ©2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
  2. This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using Rn 222 and Po 218 events, and the rms convection speed was measured to be 0.30 ± 0.01 cm / s . Given this velocity field, Pb 214 background events can be tagged when they are followed by Bi 214 and Po 214 decays, or preceded by Po 218 decays. This was achieved by evolving a point cloud in the direction of a measured convection velocity field, and searching for Bi 214 and Po 214 decays or Po 218 decays within a volume defined by the point cloud. In XENON1T, this tagging system achieved a Pb 214 background reduction of 6.2 0.9 + 0.4 % with an exposure loss of 1.8 ± 0.2 % , despite the timescales of convection being smaller than the relevant decay times. We show that the performance can be improved in XENONnT, and that the performance of such a software-tagging approach can be expected to be further improved in a diffusion-limited scenario. Finally, a similar method might be useful to tag the cosmogenic Xe 137 background, which is relevant to the search for neutrinoless double-beta decay. Published by the American Physical Society2024 
    more » « less
  3. We present the first measurement of nuclear recoils from solar B 8 neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t × yr resulted in 37 observed events above 0.5 keV, with ( 26.4 1.3 + 1.4 ) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73 σ . The measured B 8 solar neutrino flux of ( 4.7 2.3 + 3.6 ) × 10 6 cm 2 s 1 is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CE ν NS cross section on Xe of ( 1.1 0.5 + 0.8 ) × 10 39 cm 2 is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. Published by the American Physical Society2024 
    more » « less
  4. This manuscript reports on the direct observation of a β -delayed two-neutron emission in a study of In 134 at the ISOLDE Decay Station using neutron spectroscopy. We also report on the first measurement in β decay of the long-sought 13 / 2 + excited state in Sn 133 , attributed to be the neutron single-particle i 13 / 2 orbital. The observation of sequential neutron emission is used to extract the relative population of the i 13 / 2 state, which was found to be much smaller than the predictions of the statistical model. The experiment was possible because of the innovative use of a neutron array with neutron discrimination and interaction tracking capabilities. This is the first study of the details of the two-neutron emission for a nucleus, which belongs to the r -process path. Understanding β -delayed two-neutron emission probabilities is essential to validate models used in astrophysical r -process nucleosynthesis calculations. Observing two-neutron emissions in β decay paves the way for new experiments to study energy and angular correlations for β -delayed multineutron emitters. 
    more » « less
  5. We present the first measurement of cosmic-ray fluxes of Li 6 and Li 7 isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on 9.7 × 10 5 Li 6 and 1.04 × 10 6 Li 7 nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity range the Li 6 and Li 7 fluxes exhibit nearly identical time variations and, above 4 GV , the time variations of Li 6 , Li 7 , He, Be, B, C, N, and O fluxes are identical. Above 7 GV , we find an identical rigidity dependence of the Li 6 and Li 7 fluxes. This shows that they are both produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular, excludes the existence of a sizable primary component in the Li 7 flux. Published by the American Physical Society2025 
    more » « less