skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fundamental Tests of White Dwarf Cooling Physics with Wide Binaries
Abstract We present follow-up spectroscopy and a detailed model atmosphere analysis of 29 wide double white dwarfs, including eight systems with a crystallized C/O core member. We use the state-of-the-art evolutionary models to constrain the physical parameters of each star, including the total age. Assuming that the members of wide binaries are coeval, any age difference between the binary members can be used to test the cooling physics for white dwarf stars, including potential delays due to crystallization and22Ne distillation. We use our control sample of 14 wide binaries with noncrystallized members to show that this method works well; the control sample shows an age difference of only ΔAge = −0.03 ± 0.15 Gyr between its members. For the eight crystallized C/O core systems we find a cooling anomaly of ΔAge = 1.13 1.07 + 1.20 Gyr. Even though our results are consistent with a small additional cooling delay (∼1 Gyr) from22Ne distillation and other neutron-rich impurities, the large uncertainties make this result not statistically significant. Nevertheless, we rule out cooling delays longer than 3.6 Gyr at the 99.7% (3σ) confidence level for 0.6–0.9Mwhite dwarfs. Further progress requires larger samples of wide binaries with crystallized massive white dwarf members. We provide a list of subgiant + white dwarf binaries that could be used for this purpose in the future.  more » « less
Award ID(s):
2205736
PAR ID:
10543185
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
973
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 88
Size(s):
Article No. 88
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a detailed model atmosphere analysis of massive white dwarfs withM> 0.9MandTeff≥ 11,000 K in the Montreal White Dwarf Database 100 pc sample and the Pan-STARRS footprint. We obtained follow-up optical spectroscopy of 109 objects with no previous spectral classification in the literature. Our spectroscopic follow-up is now complete for all 204 objects in the sample. We find 118 normal DA white dwarfs, including 45 massive DAs near the ZZ Ceti instability strip. There are no normal massive DBs: the six DBs in the sample are strongly magnetic and/or rapidly rotating. There are 20 massive DQ white dwarfs in our sample, and all are found in the crystallization sequence. In addition, 66 targets are magnetic (32% of the sample). We use magnetic white dwarf atmosphere models to constrain the field strength and geometry using offset dipole models. We also use magnetism, kinematics, and rotation measurements to constrain the fraction of merger remnant candidates among this population. The merger fraction of this sample increases from 25% for 0.9–1Mwhite dwarfs to 49% for 1.2–1.3M. However, this fraction is as high as 78 7 + 4 % for 1.1–1.2Mwhite dwarfs. Previous works have demonstrated that 5%–9% of high-mass white dwarfs stop cooling for ∼8 Gyr due to the22Ne distillation process, which leads to an overdensity of Q-branch stars in the solar neighborhood. We demonstrate that the overabundance of the merger remnant candidates in our sample is likely due to the same process. 
    more » « less
  2. Abstract A recent study by Hon et al. reported that a close-in planet around the red clump star, 8 UMi, should have been engulfed during the expansion phase of its parent star’s evolution. They explained the survival of this exoplanet through a binary-merger channel for 8 UMi. The key to testing this formation scenario is to derive the true age of this star: is it an old “imposter” resulting from a binary merger, or a genuinely young red clump giant? To accomplish this, we derive kinematic and chemical properties for 8 UMi using astrometric data from Gaia DR3 and the element-abundance pattern measured from a high-resolution (R∼ 75,000) spectrum taken by SOPHIE. Our analysis shows that 8 UMi is a normal thin-disk star with orbital rotation speed ofVϕ= 244.96 km s−1, and possesses a solar metallicity ([Fe/H] = −0.05 ± 0.07) andα-element-abundance ratio ([α/Fe] = +0.01 ± 0.03). By adopting well-established relationships between age and space velocities/elemental abundances, we estimate a kinematic age of 3.50 2.00 + 3.00 Gyr, and a chemical age of 3.25 1.50 + 2.50 Gyr from [C/N] and 3.47 ± 1.96 Gyr from [Y/Mg] for 8 UMi, respectively. These estimates are consistent with the isochrone-fitting age ( 1.90 0.30 + 1.15 Gyr) of 8 UMi, but are all much younger than the timescale required in a binary-merger scenario. This result challenges the binary-merger model; the existence of such a closely orbiting exoplanet around a giant star remains a mystery yet to be resolved. 
    more » « less
  3. Abstract We report the discovery of Specter, a disrupted ultrafaint dwarf galaxy revealed by the H3 Spectroscopic Survey. We detected this structure via a pair of comoving metal-poor stars at a distance of 12.5 kpc, and further characterized it with Gaia astrometry and follow-up spectroscopy. Specter is a 25° × 1° stream of stars that is entirely invisible until strict kinematic cuts are applied to remove the Galactic foreground. The spectroscopic members suggest a stellar ageτ≳ 12 Gyr and a mean metallicity [ Fe / H ] = 1.84 0.18 + 0.16 , with a significant intrinsic metallicity dispersion σ [ Fe / H ] = 0.37 0.13 + 0.21 . We therefore argue that Specter is the disrupted remnant of an ancient dwarf galaxy. With an integrated luminosityMV≈ −2.6, Specter is by far the least-luminous dwarf galaxy stream known. We estimate that dozens of similar streams are lurking below the detection threshold of current search techniques, and conclude that spectroscopic surveys offer a novel means to identify extremely low surface brightness structures. 
    more » « less
  4. Abstract Brown dwarfs bridge the gap between stars and planets, providing valuable insight into both planetary and stellar-formation mechanisms. Yet the census of transiting brown-dwarf companions, in particular around M-dwarf stars, remains incomplete. We report the discovery of two transiting brown dwarfs around low-mass hosts using a combination of space- and ground-based photometry along with near-infrared radial velocities. We characterize TOI-5389Ab ( 68 . 0 2.2 + 2.2 M J ) and TOI-5610b ( 40 . 4 1.0 + 1.0 M J ), two moderately massive brown dwarfs orbiting early M-dwarf hosts (Teff = 3569 ± 59 K and 3618 ± 59 K, respectively). For TOI-5389Ab, the best fitting parameters are periodP = 10.40046 ± 0.00002 days, radius R BD = 0.82 4 0.031 + 0.033 RJ, and low eccentricity e = 0.096 2 0.0046 + 0.0027 . In particular, this constitutes one of the most extreme substellar-stellar companion-to-host mass ratios ofq= 0.150. For TOI-5610b, the best-fitting parameters are periodP = 7.95346 ± 0.00002 days, radius R BD = 0.88 7 0.031 + 0.031 RJ, and moderate eccentricity e = 0.35 4 0.012 + 0.011 . Both targets are expected to have shallow, but potentially observable, occultations: ≲500 ppm in the JohnsonKband. A statistical analysis of M-dwarf/BD systems reveals for the first time that those at short orbital periods (P < 13 days) exhibit a dearth of 13MJ < MBD < 40MJcompanions (q < 0.1) compared to those at slightly wider separations. 
    more » « less
  5. Abstract A star's spin–orbit angle can give us insight into a system's formation and dynamical history. In this paper, we use MAROON-X observations of the Rossiter–McLaughlin effect to measure the projected obliquity of the LP 261-75 (also known as TOI-1779) system, focusing on the fully convective M dwarf LP 261-75A and the transiting brown dwarf LP 261-75C. This is the first obliquity constraint of a brown dwarf orbiting an M dwarf and the seventh obliquity constraint of a brown dwarf overall. We measure a projected obliquity of 5 10 + 11 degrees and a true obliquity of 1 4 7 + 8 degrees for the system, meaning that the system is well aligned and that the star is rotating very nearly edge-on, with an inclination of 90° ±  11°. The system thus follows along with the trends observed in transiting brown dwarfs around hotter stars, which typically have low obliquities. The tendency for brown dwarfs to be aligned may point to some enhanced obliquity damping in brown dwarf systems, but there is also a possibility that the LP 261-75 system was simply formed aligned. In addition, we note that the brown dwarf's radius (RC =  0.9RJ) is not consistent with the youth of the system or radius trends observed in other brown dwarfs, indicating that LP 261-75C may have an unusual formation history. 
    more » « less