skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205736

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report our findings on a spectroscopic survey of seven unresolved DA+DB binary white dwarf candidates. We have discovered extreme spectroscopic variations in one of these candidates, SDSS J084716.21+484220.40. Previous analysis failed to reproduce the optical spectrum using a single object with a homogeneous atmosphere. Our time-resolved spectroscopy reveals a double-faced white dwarf that switches between a DBA and DA spectral type over 6.5 or 8.9 hr due to varying surface abundances. We also provide time-series spectroscopy of the magnetic DBA, SDSS J085618.94+161103.6 (LB 8915), and confirm an inhomogeneous atmosphere. We employ an atmosphere model with hydrogen caps and a helium belt that yields excellent fits to our time-resolved spectra. We use the oblique rotator model to derive the system geometry for both targets. With the addition of these two objects, the emerging class of double-faced white dwarfs now consists of seven members. We summarize the properties of this new class of objects, and discuss how magnetism impacts the convective processes and leads to the formation of double-faced white dwarfs. We identify cooler versions of white dwarfs with inhomogeneous atmospheres among the cool magnetic DA white dwarf sample, where the Hαline is shallower than expected based on pure hydrogen atmosphere models. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract The discovery of pulsations in ultramassive (UM) white dwarfs (WDs) can help to probe their interiors and unveil their core composition and crystallized mass fraction through asteroseismic techniques. To date, the richest pulsating UM WD known is BPM 37093 with 8 modes detected, for which detailed asteroseismic analysis has been performed in the past. In this work, we report the discovery of 19 pulsation modes in the UM WD star WD J0135+5722, making it the richest pulsating hydrogen-atmosphere UM WD known to date. This object exhibits multiperiodic luminosity variations with periods ranging from 137 to 1345 s, typical of pulsating WDs in the ZZ Ceti instability strip, which is centered atTeff ∼ 12,000 K. We estimate the stellar mass of WD J0135+5722 by different methods, resulting inM ∼ 1.12–1.14Mif the star’s core is made of oxygen and neon orM ∼ 1.14–1.15Mif the star hosts a carbon oxygen core. Future analysis of the star periods could shed light on the core chemical composition through asteroseismology. 
    more » « less
    Free, publicly-accessible full text available February 7, 2026
  3. Abstract We increase the spectroscopic completeness of the 100 pc white dwarf sample in the Sloan Digital Sky Survey footprint with 840 additional spectra. Our spectroscopy is 86% complete for white dwarfs hotter thanTeff = 5000 K, where Hαremains visible and provides reliable constraints on the atmospheric composition. We identify 2108 DA white dwarfs with pure hydrogen atmospheres, and show that ultramassive DA white dwarfs withM≥ 1.1Mare an order of magnitude less common below 10,000 K. This is consistent with a fraction of them getting stuck on the crystallization sequence due to22Ne distillation. In addition, there are no ultramassive DA white dwarfs withM≥ 1.1MandTeff≤ 6000 K in our sample, likely because Debye cooling makes them rapidly fade away. We detect a significant trend in the fraction of He atmosphere white dwarfs as a function of temperature; the fraction increases from 9% at 20,000 K to 32% at 6000 K. This provides direct evidence of convective mixing in cool DA white dwarfs. Finally, we detect a relatively tight sequence of low-mass DQ white dwarfs in color–magnitude diagrams for the first time. We discuss the implications of this tight DQ sequence, and conclude with a discussion of the future prospects from the upcoming Ultraviolet Transient Astronomy Satellite mission and the large-scale multi-fiber spectroscopic surveys. 
    more » « less
  4. Abstract Infrared-faint white dwarfs are cool white dwarfs exhibiting significant infrared flux deficits, most often attributed to collision-induced absorption (CIA) from H2–He in mixed hydrogen–helium atmospheres. We present James Webb Space Telescope (JWST) near- and mid-infrared spectra of three such objects using Near-Infrared Spectrograph (0.6–5.3μm) and Mid-Infrared Instrument (5–14μm): LHS 3250, WD J1922+0233, and LHS 1126. Surprisingly, for LHS 3250, we detect no H2–He CIA absorption at 2.4μm, instead observing an unexpected small flux bump at this wavelength. WD J1922+0233 exhibits the anticipated strong absorption feature centered at 2.4μm, but with an unexpected narrow emission-like feature inside this absorption band. LHS 1126 shows no CIA features and follows aλ−2power law in the mid-infrared. LHS 1126's lack of CIA features suggests a very low hydrogen abundance, with its infrared flux depletion likely caused by He–He–He CIA. For LHS 3250 and WD J1922+0233, the absence of a 1.2μm CIA feature in both stars argues against ultracool temperatures, supporting recent suggestions that infrared-faint (IR-faint) white dwarfs are warmer and more massive than previously thought. This conclusion is further solidified by Keck near-infrared spectroscopy of seven additional objects. We explore possible explanations for the unexpected emission-like features in both stars, and temperature inversions above the photosphere emerge as a promising hypothesis. Such inversions may be common among the IR-faint population, and since they significantly affect the infrared spectral energy distribution, this would impact their photometric fits. Further JWST observations are needed to confirm the prevalence of this phenomenon and guide the development of improved atmospheric models. 
    more » « less
  5. Abstract We present follow-up spectroscopy and a detailed model atmosphere analysis of 29 wide double white dwarfs, including eight systems with a crystallized C/O core member. We use the state-of-the-art evolutionary models to constrain the physical parameters of each star, including the total age. Assuming that the members of wide binaries are coeval, any age difference between the binary members can be used to test the cooling physics for white dwarf stars, including potential delays due to crystallization and22Ne distillation. We use our control sample of 14 wide binaries with noncrystallized members to show that this method works well; the control sample shows an age difference of only ΔAge = −0.03 ± 0.15 Gyr between its members. For the eight crystallized C/O core systems we find a cooling anomaly of ΔAge = 1.13 1.07 + 1.20 Gyr. Even though our results are consistent with a small additional cooling delay (∼1 Gyr) from22Ne distillation and other neutron-rich impurities, the large uncertainties make this result not statistically significant. Nevertheless, we rule out cooling delays longer than 3.6 Gyr at the 99.7% (3σ) confidence level for 0.6–0.9Mwhite dwarfs. Further progress requires larger samples of wide binaries with crystallized massive white dwarf members. We provide a list of subgiant + white dwarf binaries that could be used for this purpose in the future. 
    more » « less
  6. Abstract We present a detailed model atmosphere analysis of massive white dwarfs withM> 0.9MandTeff≥ 11,000 K in the Montreal White Dwarf Database 100 pc sample and the Pan-STARRS footprint. We obtained follow-up optical spectroscopy of 109 objects with no previous spectral classification in the literature. Our spectroscopic follow-up is now complete for all 204 objects in the sample. We find 118 normal DA white dwarfs, including 45 massive DAs near the ZZ Ceti instability strip. There are no normal massive DBs: the six DBs in the sample are strongly magnetic and/or rapidly rotating. There are 20 massive DQ white dwarfs in our sample, and all are found in the crystallization sequence. In addition, 66 targets are magnetic (32% of the sample). We use magnetic white dwarf atmosphere models to constrain the field strength and geometry using offset dipole models. We also use magnetism, kinematics, and rotation measurements to constrain the fraction of merger remnant candidates among this population. The merger fraction of this sample increases from 25% for 0.9–1Mwhite dwarfs to 49% for 1.2–1.3M. However, this fraction is as high as 78 7 + 4 % for 1.1–1.2Mwhite dwarfs. Previous works have demonstrated that 5%–9% of high-mass white dwarfs stop cooling for ∼8 Gyr due to the22Ne distillation process, which leads to an overdensity of Q-branch stars in the solar neighborhood. We demonstrate that the overabundance of the merger remnant candidates in our sample is likely due to the same process. 
    more » « less
  7. Abstract Four years after the discovery of a unique DAQ white dwarf with a hydrogen-dominated and carbon-rich atmosphere, we report the discovery of four new DAQ white dwarfs, including two that were not recognized properly in the literature. We find all five DAQs in a relatively narrow mass and temperature range ofM= 1.14–1.19MandTeff= 13,000–17,000 K. In addition, at least two show photometric variations due to rapid rotation with ≈10 minute periods. All five are also kinematically old, but appear photometrically young, with estimated cooling ages of about 1 Gyr based on standard cooling tracks, and their masses are roughly twice the mass of the most common white dwarfs in the solar neighborhood. These characteristics are smoking gun signatures of white dwarf merger remnants. Comparing the DAQ sample with warm DQ white dwarfs, we demonstrate that there is a range of hydrogen abundances among the warm DQ population and that the distinction between DAQ and warm DQ white dwarfs is superficial. We discuss the potential evolutionary channels for the emergence of the DAQ subclass, suggesting that DAQ white dwarfs are trapped on the crystallization sequence and may remain there for a significant fraction of the Hubble time. 
    more » « less
  8. Abstract The launch of JWST has ushered in a new era of high-precision infrared astronomy, allowing us to probe nearby white dwarfs for cold dust, exoplanets, and tidally heated exomoons. While previous searches for these exoplanets have successfully ruled out companions as small as 7–10 Jupiter masses (MJup), no instrument prior to JWST has been sensitive to the likely more common sub-Jovian-mass planets around white dwarfs. In this paper, we present the first multiband photometry (F560W, F770W, F1500W, F2100W) taken of WD 2149+021 with the Mid-Infrared Instrument on JWST. After a careful search for both resolved and unresolved planets, we do not identify any compelling candidates around WD 2149+021. Our analysis indicates that we are sensitive to companions as small as ∼0.5MJupoutwards of 1.″263 (28.3 au) and ∼1.0MJupat the innermost working angle (0.″654, 14.7 au) at 3 Gyr with 5σconfidence, placing significant constraints on any undetected companions around this white dwarf. The results of these observations emphasize the exciting future of sub-Jovian planet detection limits by JWST, which can begin to constrain how often these planets survive their host stars' evolution. 
    more » « less
  9. Abstract We report the discovery of two directly imaged, giant planet candidates orbiting the metal-rich, hydrogen atmosphere white dwarfs WD 1202−232 and WD 2105−82. JWST’s Mid-Infrared Instrument (MIRI) data on these two stars show a nearby resolved source at a projected separation of 11.47 and 34.62 au, respectively. Assuming the planets formed at the same time as their host stars, with total ages of 5.3 and 1.6 Gyr, the MIRI photometry is consistent with giant planets with masses ≈1–7MJup. The probability of both candidates being false positives due to red background sources is approximately 1 in 3000. If confirmed, these would be the first directly imaged planets that are similar in both age and separation to the giant planets in our own solar system, and they would demonstrate that widely separated giant planets like Jupiter survive stellar evolution. Giant planet perturbers are widely used to explain the tidal disruption of asteroids around metal-polluted white dwarfs. Confirmation of these two planet candidates with future MIRI imaging would provide evidence that directly links giant planets to metal pollution in white dwarf stars. 
    more » « less
  10. ABSTRACT We report the discovery of spectroscopic variations in the magnetic DBA white dwarf SDSS J091016.43+210554.2. Follow-up time-resolved spectroscopy at the Apache Point Observatory (APO) and the MMT show significant variations in the H absorption lines over a rotation period of 7.7 or 11.3 h. Unlike recent targets that show similar discrepancies in their H and He line profiles, such as GD 323 and Janus (ZTF J203349.8+322901.1), SDSS J091016.43+210554.2 is confirmed to be magnetic, with a field strength derived from Zeeman-split H and He lines of B ≈ 0.5 MG. Model fits using a H and He atmosphere with a constant abundance ratio across the surface fail to match our time-resolved spectra. On the other hand, we obtain excellent fits using magnetic atmosphere models with varying H/He surface abundance ratios. We use the oblique rotator model to fit the system geometry. The observed spectroscopic variations can be explained by a magnetic inhomogeneous atmosphere where the magnetic axis is offset from the rotation axis by β = 52°, and the inclination angle between the line of sight and the rotation axis is i = 13–16°. This magnetic white dwarf offers a unique opportunity to study the effect of the magnetic field on surface abundances. We propose a model where H is brought to the surface from the deep interior more efficiently along the magnetic field lines, thus producing H polar caps. 
    more » « less