skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 1, 2025

Title: Seasonal and Interannual Variability in the Distribution and Removal of Terrigenous Dissolved Organic Carbon in the Amazon River Plume
Abstract The Amazon River is a large source of terrigenous dissolved organic carbon (tDOC) to the Atlantic Ocean. The fate of this tDOC in the ocean remains unclear despite its importance to the global carbon cycle. Here, we used two decades of satellite ocean color to describe variability in tDOC in the Amazon River plume. Our analyses showed that tDOC distribution has a distinct seasonal pattern, reaching northwest toward the Caribbean during high discharge periods, and moving eastward entrained in the North Brazil Current retroflection during low discharge periods. Elevated tDOC content extended beyond the shelfbreak in all months of the year, suggesting that cross‐shelf carbon transport occurs year‐round. Maximum variability was found at the plume core, where seasonality accounted for 40% of the total variance, while interannual variability accounted for 15% of the variance. Our results revealed a seasonal pattern in tDOC removal over the shelf with increased consumption in May when river discharge is high. Anomalies in tDOC removal over the shelf with respect to the seasonal cycle were significantly correlated with anomalies in tDOC concentration offshore of the shelfbreak with a lag of 30–40 days, so that anomalously high inshore tDOC removal was associated with anomalously low tDOC content offshore. This suggests that variability in the offshore transport of tDOC in the Amazon River plume is modulated by interannual changes in tDOC removal over the shelf.  more » « less
Award ID(s):
2219874
PAR ID:
10543212
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
38
Issue:
6
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The biologically productive Northern Gulf of Alaska (NGA) continental shelf receives large inputs of freshwater from surrounding glaciated and non-glaciated watersheds, and a better characterization of the regional salinity spatiotemporal variability is important for understanding its fate and ecological roles. We here assess synoptic to seasonal distributions of freshwater pathways of the Copper River discharge plume and the greater NGA continental shelf and slope using observations from ship-based and towed undulating conductivity-temperaturedepth (CTD) instruments, satellite imagery, and satellite-tracked drifters. On the NGA continental shelf and slope we find low salinities not only nearshore but also 100–150 km from the coast (i.e. average 0–50 m salinities less than 31.9, 31.3, and 30.8 in spring, summer, and fall respectively) indicating recurring mid-shelf and shelfbreak freshwater pathways. Close to the Copper River, the shelf bathymetry decouples the spreading river plume from the direct effects of seafloor-induced steering and mixing, allowing iron- and silicic acid-rich river outflow to propagate offshore within a surface-trapped plume. Self-organized mapping analysis applied to true color satellite imagery reveals common patterns of the turbid river plume. We show that the Copper River plume is sensitive to local wind forcing and exerts control over water column stratification up to ~100 km from the river mouth. Upwelling-favorable wind stress modifies plume entrainment and density anomalies and plume width. Baroclinic transport of surface waters west of the river mouth closely follow the influence of alongshore wind stress, while baroclinic transport east of the river mouth is additionally modified by a recurring or persistent gyre. Our results provide context for considering the oceanic fate of terrestrial discharges in the Gulf of Alaska. 
    more » « less
  2. Abstract The Tocantins River contributes ∼5% of the total flux of water to the Amazon River plume in the Atlantic Ocean. Here, we evaluate monthly variability in the composition and abundance of carbon, nitrogen, and suspended sediment in the lower reaches of the Tocantins River from 2014 to 2016. Dissolved organic carbon concentrations generally increased during periods of high discharge and are ∼1.5 times lower than average concentrations at the mouth of the Amazon River. Dissolved inorganic carbon similarly increased during periods of high discharge. Total dissolved nitrogen and individual nitrogen species followed a similar temporal pattern, increasing during high water.predominated the dissolved inorganic nitrogen pool, followed by, and, characteristic of environments with a relatively low anthropogenic impact. Dissolved fractions represented 92% of the total carbon exported and 78% of the total nitrogen exported. The suspended particulate sediment flux was 2.72 × 106 t yr−1, with fine suspended sediment dominating (71.3%). Concentrations of carbon relative to nitrogen indicate a primarily terrigenous source of organic matter and CO2derived from in situ respiration of this material during the rainy season and a primarily algal/bacterial source of organic matter during the dry season. Considering past estimates of dissolved carbon and nitrogen fluxes from the Amazon River to the Atlantic Ocean, the Tocantins River contributes 3% and 3.7% to total fluxes to the Amazon River plume region, respectively. While this contribution is relatively small, it may be influenced by future changes to the basin's land use and hydrology. 
    more » « less
  3. The variability and drivers of the cross-shelf exchanges between the Southwestern Atlantic shelf and the open ocean from 30 to 40°S are analyzed using a high-resolution ocean model reanalysis at daily resolution. The model's performance was first evaluated using altimetry data, and independent mooring and hydrographic data collected in the study area. Model transports are in overall good agreement with all other estimates. The record-mean (1993–2018) cross-shore transport is offshore, 2.09 ± 1.60 Sv. 73% of the shelf-open ocean exchange occurs in the vicinity of Brazil-Malvinas Confluence (~38°S) and 20% near 32°S. This outflow is mostly contributed by northward alongshore transport through 40°S (63%) and the remaining by southward transport through 30°S (37%). The cross-shore flow presents weak seasonal variations, with a maximum in austral summer, and high variability at subannual and weekly time scales. The latter is mainly associated with abrupt wind changes generated by synoptic atmospheric systems. Alongshore wind variations set up sea-level changes in the inner shelf which in turn drive large anomalies in the associated geostrophic alongshore flow. The difference in inner shelf sea-level anomalies at 30 and 40°S is a good indicator of cross-shelf exchange at seasonal and shorter time scales. Episodes of extreme offshore transport that reach up to 9.45 Sv and last about 2 days are driven by convergence of these alongshore flows over the shelf. Large exports of shelf waters lead to freshening of the upper open ocean as revealed by in-situ and satellite observations. In contrast, onshore extreme events drive open ocean water intrusions of up to 6.53 Sv and last <4 days. These inflows, particularly the subtropical waters from the Brazil Current, induce a substantial salinification of the outer shelf. 
    more » « less
  4. The offshore transport of Greenland coastal waters influenced by freshwater input from ice sheet melting during summer plays an important role in ocean circulation and biological processes in the Labrador Sea. Many previous studies over the last decade have investigated shelfbreak transport processes in the region, primarily using ocean model simulations. Here, we use 27 years of surface geostrophic velocity observations from satellite altimetry, modified to include Ekman dynamics based on atmospheric reanalysis, and virtual particle releases to investigate seasonal and interannual variability in transport of coastal water in the Labrador Sea. Two sets of tracking experiments were pursued, one using geostrophic velocities only, and another using total velocities including the wind effect. Our analysis revealed substantial seasonal variability, even when only geostrophic velocities were considered. Water from coastal southwest Greenland is generally transported northward into Baffin Bay, although westward transport off the west Greenland shelf increases in fall and winter due to winds. Westward offshore transport is increased for water from southeast Greenland so that, in some years, water originating near the east Greenland coast during summer can be transported into the central Labrador Sea and the convection region. When wind forcing is considered, long-term trends suggest decreasing transport of Greenland coastal water during the melting season toward Baffin Bay, and increasing transport into the interior of the Labrador Sea for water originating from southeast Greenland during summer, where it could potentially influence water column stability. Future studies using higher-resolution velocity observations are needed to capture the role of submesoscale variability in transport pathways in the Labrador Sea. 
    more » « less
  5. Abstract River plumes are a dominant forcing agent in the coastal ocean, transporting tracers and nutrients offshore and interacting with coastal circulation. In this study we characterize the novel “cross-shelf” regime of freshwater river plumes. Rather than remaining coastally trapped (a well-established regime), a wind-driven cross-shelf plume propagates for tens to over 100 km offshore of the river mouth while remaining coherent. We perform a suite of high-resolution idealized numerical experiments that offer insight into how the cross-shelf regime comes about and the parameter space it occupies. The wind-driven shelf flow comprising the geostrophic along-shelf and the Ekman cross-shelf transport advects the plume momentum and precludes geostrophic adjustment within the plume, leading to continuous generation of internal solitons in the offshore and upstream segment of the plume. The solitons propagate into the plume interior, transporting mass within the plume and suppressing plume widening. We examine an additional ultra-high-resolution case that resolves submesoscale dynamics. This case is dynamically consistent with the lower-resolution simulations, but additionally captures vigorous inertial-symmetric instability leading to frontal erosion and lateral mixing. We support these findings with observations of the Winyah Bay plume, where the cross-shelf regime is observed under analogous forcing conditions to the model. The study offers an in-depth introduction to the cross-shelf plume regime and a look into the submesoscale mixing phenomena arising in estuarine plumes. Significance StatementIn this study, we characterize a novel regime of freshwater river plumes. Rather than spreading near to or along the coast, under certain conditions river plumes may propagate away from the coast and remain coherent for tens to over 100 km offshore. Cross-shelf plumes provide a mechanism by which freshwater and river-borne materials may be transported into the open ocean, especially across wide continental shelves. Such plumes carry nutrients critical for biological productivity offshore and interact with large-scale oceanic features such as the Gulf Stream. We use high-resolution numerical modeling to examine how the cross-shelf regime arises and support our findings with observational evidence. We also study the mixing phenomena and fluid instabilities evolving within such plumes. 
    more » « less