skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 8, 2026

Title: Spatio-temporal variability of San Francisco Bay Plume from space
As brackish turbid waters exit San Francisco Bay, one of the largest estuaries in the U.S. West Coast, they form the San Francisco Bay Plume (SFBP), which spreads offshore and influences the Gulf of the Farallones (GoF), an ecologically significant region in the California Current System that is also home to three National Marine Sanctuaries. This paper provides the first observationally based investigation of the spatio-temporal variability of the SFBP, using a plume tracking algorithm applied to more than two decades (2002-2023) of ocean color data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard satellites Aqua and Terra. The turbid SFBP spreads radially, extending 10-20 km offshore around 50% of the time, and during extreme discharge events (<1% of the time), the plume can reach nearly 60 km offshore to the shelf break. The greatest variability in frequency of plume occurrence was observed 10-20 km offshore and it was largely explained by the seasonal cycle (80% of total variance), linked primarily to seasonal changes in river discharge. Largest plume areas (determined by summing up all pixel areas weighted by their respective fraction of plume occurrence) were observed during winter and smallest during summer, occupying on average 24% and 1.5% of GoF area, respectively. Beyond 20-30 km offshore, variability in frequency of plume occurrence was dominated by the intraseasonal band (50-80% of total variance), attributed to plume response to synoptic wind-forcing and/or filaments and eddies, while the interannual band played a secondary role in the plume variability (<20% of total variance). Finally, a multivariable linear regression model of the turbid SFBP area was created to explore the potential predictability of the plume’s influence in the GoF. The model included the annual and semi-annual cycles and discharge anomalies (deseasoned and detrended), and despite its simplicity, it explained over 78% of total variance of the turbid SFBP area. Therefore, it could be a useful tool for scientists and stakeholders to better understand how management actions on freshwater supply can have consequences offshore beyond the Golden Gate and help guide future management decisions in this ecologically important region.  more » « less
Award ID(s):
1948921
PAR ID:
10638725
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Frontiers in Marine Science
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
12
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Amazon River is a large source of terrigenous dissolved organic carbon (tDOC) to the Atlantic Ocean. The fate of this tDOC in the ocean remains unclear despite its importance to the global carbon cycle. Here, we used two decades of satellite ocean color to describe variability in tDOC in the Amazon River plume. Our analyses showed that tDOC distribution has a distinct seasonal pattern, reaching northwest toward the Caribbean during high discharge periods, and moving eastward entrained in the North Brazil Current retroflection during low discharge periods. Elevated tDOC content extended beyond the shelfbreak in all months of the year, suggesting that cross‐shelf carbon transport occurs year‐round. Maximum variability was found at the plume core, where seasonality accounted for 40% of the total variance, while interannual variability accounted for 15% of the variance. Our results revealed a seasonal pattern in tDOC removal over the shelf with increased consumption in May when river discharge is high. Anomalies in tDOC removal over the shelf with respect to the seasonal cycle were significantly correlated with anomalies in tDOC concentration offshore of the shelfbreak with a lag of 30–40 days, so that anomalously high inshore tDOC removal was associated with anomalously low tDOC content offshore. This suggests that variability in the offshore transport of tDOC in the Amazon River plume is modulated by interannual changes in tDOC removal over the shelf. 
    more » « less
  2. Abstract The risk of compound coastal flooding in the San Francisco Bay Area is increasing due to climate change yet remains relatively underexplored. Using a novel hybrid statistical-dynamical downscaling approach, this study investigates the impacts of climate change induced sea-level rise and higher river discharge on the magnitude and frequency of flooding events as well as the relative importance of various forcing drivers to compound flooding within the Bay. Results reveal that rare occurrences of flooding under the present-day climate are projected to occur once every few hundred years under climate change with relatively low sea-level rise (0.5 m) but would become annual events under climate change with high sea-level rise (1.0 to 1.5 m). Results also show that extreme water levels that are presently dominated by tides will be dominated by sea-level rise in most locations of the Bay in the future. The dominance of river discharge to the non-tidal and non-sea-level rise driven water level signal in the North Bay is expected to extend ~15 km further seaward under extreme climate change. These findings are critical for informing climate adaptation and coastal resilience planning in San Francisco Bay. 
    more » « less
  3. The biologically productive Northern Gulf of Alaska (NGA) continental shelf receives large inputs of freshwater from surrounding glaciated and non-glaciated watersheds, and a better characterization of the regional salinity spatiotemporal variability is important for understanding its fate and ecological roles. We here assess synoptic to seasonal distributions of freshwater pathways of the Copper River discharge plume and the greater NGA continental shelf and slope using observations from ship-based and towed undulating conductivity-temperaturedepth (CTD) instruments, satellite imagery, and satellite-tracked drifters. On the NGA continental shelf and slope we find low salinities not only nearshore but also 100–150 km from the coast (i.e. average 0–50 m salinities less than 31.9, 31.3, and 30.8 in spring, summer, and fall respectively) indicating recurring mid-shelf and shelfbreak freshwater pathways. Close to the Copper River, the shelf bathymetry decouples the spreading river plume from the direct effects of seafloor-induced steering and mixing, allowing iron- and silicic acid-rich river outflow to propagate offshore within a surface-trapped plume. Self-organized mapping analysis applied to true color satellite imagery reveals common patterns of the turbid river plume. We show that the Copper River plume is sensitive to local wind forcing and exerts control over water column stratification up to ~100 km from the river mouth. Upwelling-favorable wind stress modifies plume entrainment and density anomalies and plume width. Baroclinic transport of surface waters west of the river mouth closely follow the influence of alongshore wind stress, while baroclinic transport east of the river mouth is additionally modified by a recurring or persistent gyre. Our results provide context for considering the oceanic fate of terrestrial discharges in the Gulf of Alaska. 
    more » « less
  4. Abstract The Iceland Scotland Overflow Water (ISOW) plume supplies approximately a third of the production of North Atlantic Deep Water and is a key component of the meridional overturning circulation (MOC). The Overturning in the Subpolar North Atlantic Program (OSNAP) mooring array in the Iceland Basin has provided high‐resolution observations of ISOW from 2014 to 2020. The ISOW plume forms a deep western boundary current along the eastern flank of Reykjanes Ridge, and its total transport varies by greater than a factor of two on intra‐seasonal timescales. EOF analysis of moored current meter records reveal two dominant modes of velocity variance. The first mode explains roughly 20% of the variance and shows a bottom intensified structure concentrated in the rift valley that runs parallel to the ridge axis. The transport anomaly reconstructed from the first mode explains nearly 80% of the total ISOW plume transport variance. The second mode accounts for 15% of velocity variance, but only 5% of the transport variance. The geostrophically estimated transport (2.9 Sv) recovers only 70% of the total ISOW transport along the ridge flank estimated from the direct current meter observations (4.2 Sv), implying a significant ageostrophic component of ISOW mean transport and variability. Ageostrophic flow is strongly linked to the leading mode of velocity variability within the rift valley. The ISOW transport variability along the upper and middle part of the ridge is further shown to correlate with changes in the strength of deep MOC limb across the basin‐wide OSNAP array. 
    more » « less
  5. Traditional knowledge, along with archaeological and linguistic evidence, documents that California supports cultural and linguistically diverse Indigenous populations. Studies that have included ancient genomes in this region, however, have focused primarily on broad-scale migration history of the North American continent, with relatively little attention to local population dynamics. Here, in a partnership involving researchers and the Muwekma Ohlone tribe, we analyze genomic data from ancient and present-day individuals from the San Francisco Bay Area in California: 12 ancient individuals dated to 1905 to 1826 and 601 to 184 calibrated years before the present (cal BP) from two archaeological sites and eight present-day members of the Muwekma Ohlone tribe, whose ancestral lands include these two sites. We find that when compared to other ancient and modern individuals throughout the Americas, the 12 ancient individuals from the San Francisco Bay Area cluster with ancient individuals from Southern California. At a finer scale of analysis, we find that the 12 ancient individuals from the San Francisco Bay Area have distinct ancestry from the other groups and that this ancestry has a component of continuity over time with the eight present-day Muwekma Ohlone individuals. These results add to our understanding of Indigenous population history in the San Francisco Bay Area, in California, and in western North America more broadly. 
    more » « less