skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stable laws for random dynamical systems
Abstract In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval$$[0,1]$$in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure$$\nu $$. We consider a class of non-square-integrable observables$$\phi $$, mostly of form$$\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$$, where$$x_0$$is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index$$\alpha \in (0,2)$$. The two types of maps we concatenate are a class of piecewise$$C^2$$expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and$$\alpha $$, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by$$\nu $$. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.  more » « less
Award ID(s):
2009923
PAR ID:
10543218
Author(s) / Creator(s):
; ;
Publisher / Repository:
Ergodic Theory and Dynamical Systems
Date Published:
Journal Name:
Ergodic Theory and Dynamical Systems
ISSN:
0143-3857
Page Range / eLocation ID:
1 to 50
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract What proportion of integers$$n \leq N$$may be expressed as$$x^2 + dy^2$$for some$$d \leq \Delta $$, with$$x,y$$integers? Writing$$\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$$for some$$\alpha \in (-\infty , \infty )$$, we show that the answer is$$\Phi (\alpha ) + o(1)$$, where$$\Phi $$is the Gaussian distribution function$$\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$$. A consequence of this is a phase transition: Almost none of the integers$$n \leq N$$can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 - \varepsilon }$$, but almost all of them can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$$. 
    more » « less
  2. Abstract This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses.•If$$\kappa $$is a cardinal,$$\epsilon < \kappa $$,$${\mathrm {cof}}(\epsilon ) = \omega $$,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and a$$\delta < \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if$$f \upharpoonright \delta = g \upharpoonright \delta $$and$$\sup (f) = \sup (g)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$is a cardinal,$$\epsilon $$is countable,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$holds and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the strong almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and finitely many ordinals$$\delta _0, ..., \delta _k \leq \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$0 \leq i \leq k$$,$$\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\kappa _2$$,$$\epsilon \leq \kappa $$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere monotonicity property: There is a club$$C \subseteq \kappa $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$\alpha < \epsilon $$,$$f(\alpha ) \leq g(\alpha )$$, then$$\Phi (f) \leq \Phi (g)$$.•Suppose dependent choice ($$\mathsf {DC}$$),$${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$$and the almost everywhere short length club uniformization principle for$${\omega _1}$$hold. Then every function$$\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$$satisfies a finite continuity property with respect to closure points: Let$$\mathfrak {C}_f$$be the club of$$\alpha < {\omega _1}$$so that$$\sup (f \upharpoonright \alpha ) = \alpha $$. There is a club$$C \subseteq {\omega _1}$$and finitely many functions$$\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$$so that for all$$f \in [C]^{\omega _1}_*$$, for all$$g \in [C]^{\omega _1}_*$$, if$$\mathfrak {C}_g = \mathfrak {C}_f$$and for all$$i < n$$,$$\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$$, then$$\Phi (g) = \Phi (f)$$.•Suppose$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\epsilon _2$$for all$$\epsilon < \kappa $$. For all$$\chi < \kappa $$,$$[\kappa ]^{<\kappa }$$does not inject into$${}^\chi \mathrm {ON}$$, the class of$$\chi $$-length sequences of ordinals, and therefore,$$|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$$. As a consequence, under the axiom of determinacy$$(\mathsf {AD})$$, these two cardinality results hold when$$\kappa $$is one of the following weak or strong partition cardinals of determinacy:$${\omega _1}$$,$$\omega _2$$,$$\boldsymbol {\delta }_n^1$$(for all$$1 \leq n < \omega $$) and$$\boldsymbol {\delta }^2_1$$(assuming in addition$$\mathsf {DC}_{\mathbb {R}}$$). 
    more » « less
  3. Abstract Every Thurston map$$f\colon S^2\rightarrow S^2$$on a$$2$$-sphere$$S^2$$induces a pull-back operation on Jordan curves$$\alpha \subset S^2\smallsetminus {P_f}$$, where$${P_f}$$is the postcritical set off. Here the isotopy class$$[f^{-1}(\alpha )]$$(relative to$${P_f}$$) only depends on the isotopy class$$[\alpha ]$$. We study this operation for Thurston maps with four postcritical points. In this case, a Thurston obstruction for the mapfcan be seen as a fixed point of the pull-back operation. We show that if a Thurston mapfwith a hyperbolic orbifold and four postcritical points has a Thurston obstruction, then one can ‘blow up’ suitable arcs in the underlying$$2$$-sphere and construct a new Thurston map$$\widehat f$$for which this obstruction is eliminated. We prove that no other obstruction arises and so$$\widehat f$$is realized by a rational map. In particular, this allows for the combinatorial construction of a large class of rational Thurston maps with four postcritical points. We also study the dynamics of the pull-back operation under iteration. We exhibit a subclass of our rational Thurston maps with four postcritical points for which we can give positive answer to the global curve attractor problem. 
    more » « less
  4. Abstract We study a class of ordinary differential equations with a non-Lipschitz point singularity that admits non-unique solutions through this point. As a selection criterion, we introduce stochastic regularizations depending on a parameter$$\nu $$: the regularized dynamics is globally defined for each$$\nu> 0$$, and the original singular system is recovered in the limit of vanishing$$\nu $$. We prove that this limit yields aunique statistical solutionindependent of regularization when the deterministic system possesses a chaotic attractor having a physical measure with the convergence to equilibrium property. In this case, solutions become spontaneously stochastic after passing through the singularity: they are selected randomly with an intrinsic probability distribution. 
    more » « less
  5. Abstract Designing an algorithm with a singly exponential complexity for computing semialgebraic triangulations of a given semialgebraic set has been a holy grail in algorithmic semialgebraic geometry. More precisely, given a description of a semialgebraic set$$S \subset \mathbb {R}^k$$by a first-order quantifier-free formula in the language of the reals, the goal is to output a simplicial complex$$\Delta $$, whose geometric realization,$$|\Delta |$$, is semialgebraically homeomorphic toS. In this paper, we consider a weaker version of this question. We prove that for any$$\ell \geq 0$$, there exists an algorithm which takes as input a description of a semialgebraic subset$$S \subset \mathbb {R}^k$$given by a quantifier-free first-order formula$$\phi $$in the language of the reals and produces as output a simplicial complex$$\Delta $$, whose geometric realization,$$|\Delta |$$is$$\ell $$-equivalent toS. The complexity of our algorithm is bounded by$$(sd)^{k^{O(\ell )}}$$, wheresis the number of polynomials appearing in the formula$$\phi $$, andda bound on their degrees. For fixed$$\ell $$, this bound issingly exponentialink. In particular, since$$\ell $$-equivalence implies that thehomotopy groupsup to dimension$$\ell $$of$$|\Delta |$$are isomorphic to those ofS, we obtain a reduction (having singly exponential complexity) of the problem of computing the first$$\ell $$homotopy groups ofSto the combinatorial problem of computing the first$$\ell $$homotopy groups of a finite simplicial complex of size bounded by$$(sd)^{k^{O(\ell )}}$$. 
    more » « less