Abstract 4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) are used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials is not addressed. Here, the fabrication of 3D printed shape memory bioplastics with photo‐activated shape recovery is reported. Protein‐based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate (PEGDA), and AuNRs are developed for vat photopolymerization. These 3D printed bioplastics are mechanically deformed under high loads, and the proteins served as mechano‐active elements that unfolded in an energy‐dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape‐programmed state under ambient conditions. Subsequently, up to 99% shape recovery is achieved within 1 min of irradiation with near‐infrared (NIR) light. Mechanical characterization and small angle X‐ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape‐morphing devices for robotics and medicine.
more »
« less
Charge‐Programmable Photopolymers for 3D Electronics via Additive Manufacturing
Abstract Charge‐programmed 3D printing enables the fabrication of 3D electronics with lightweight and high precision via selective patterning of metals. This selective metal deposition is catalyzed by Pd nanoparticles that are specifically immobilized onto the charged surface and promises to fabricate a myriad of complex electronic devices with self‐sensing, actuation, and structural elements assembled in a designed 3D layout. However, the achievable property space and the material‐performance correlation of the charge‐programmed printing remain unexplored. Herein, a series of photo‐curable resins are designed for unveiling how the charge and crosslink densities synergistically impact the nanocatalyst‐guided selective deposition in catalytic efficiency and properties of the 3D printed charge‐programmed architectures, leading to high‐quality 3D patterning of solid and liquid metals. The findings offer a wide tunability of the structural properties of the printed electronics, ranging from stiff to extreme flexibility. Capitalizing on these results, the printing and successful application of an ultralight‐weight and deployable 3D multi‐layer antenna system operating at an ultrahigh‐frequency of 19 GHz are demonstrated.
more »
« less
- Award ID(s):
- 2309828
- PAR ID:
- 10543245
- Publisher / Repository:
- willey
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 18
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In nature, structural and functional materials often form programmed three-dimensional (3D) assembly to perform daily functions, inspiring researchers to engineer multifunctional 3D structures. Despite much progress, a general method to fabricate and assemble a broad range of materials into functional 3D objects remains limited. Herein, to bridge the gap, we demonstrate a freeform multimaterial assembly process (FMAP) by integrating 3D printing (fused filament fabrication (FFF), direct ink writing (DIW)) with freeform laser induction (FLI). 3D printing performs the 3D structural material assembly, while FLI fabricates the functional materials in predesigned 3D space by synergistic, programmed control. This paper showcases the versatility of FMAP in spatially fabricating various types of functional materials (metals, semiconductors) within 3D structures for applications in crossbar circuits for LED display, a strain sensor for multifunctional springs and haptic manipulators, a UV sensor, a 3D electromagnet as a magnetic encoder, capacitive sensors for human machine interface, and an integrated microfluidic reactor with a built-in Joule heater for nanomaterial synthesis. This success underscores the potential of FMAP to redefine 3D printing and FLI for programmed multimaterial assembly.more » « less
-
A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic InksAbstract Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology.more » « less
-
Abstract Covalent adaptable network (CAN) polymers doped with conductive nanoparticles are an ideal candidate to create reshapeable, rehealable, and fully recyclable electronics. On the other hand, 3D printing as a deterministic manufacturing method has a significant potential to fabricate electronics with low cost and high design freedom. In this paper, we incorporate a conductive composite consisting of polyimine CAN and multi-wall carbon nanotubes into direct-ink-writing 3D printing to create polymeric sensors with outstanding reshaping, repairing, and recycling capabilities. The developed printable ink exhibits good printability, conductivity, and recyclability. The conductivity of printed polyimine composites is investigated at different temperatures and deformation strain levels. Their shape-reforming and Joule heating-induced interfacial welding effects are demonstrated and characterized. Finally, a temperature sensor is 3D printed with defined patterns of conductive pathways, which can be easily mounted onto 3D surfaces, repaired after damage, and recycled using solvents. The sensing capability of printed sensors is maintained after the repairing and recycling. Overall, the 3D printed reshapeable, rehealable, and recyclable sensors possess complex geometry and extend service life, which assist in the development of polymer-based electronics toward broad and sustainable applications.more » « less
-
Abstract Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising material because of its favorable electrical and mechanical properties, stability in ambient environments, and biocompatibility. It finds broad application in energy storage, flexible electronics, and bioelectronics. Additive manufacturing opens a plethora of new avenues to form and shape PEDOT:PSS, allowing for the rapid construction of customized geometries. However, there are difficulties in printing PEDOT:PSS while maintaining its attractive properties. A 3D printing method for PEDOT:PSS using a room‐temperature coagulation bath‐based direct ink writing technique is reported. This technique enables fabrication of PEDOT:PSS into parts that are of high resolution and high conductivity, while maintaining stable electrochemical properties. The coagulation bath can be further modified to improve the mechanical properties of the resultant printed part via a one‐step reaction. Furthermore, it is demonstrated that a simple post‐processing step allows the printed electrodes to strongly adhere to several substrates under aqueous conditions, broadening their use in bioelectronics. Employing 3D printing of PEDOT:PSS, a cortex‐wide neural interface is fabricated, and intracranial electrical stimulation and simultaneous optical monitoring of mice brain activity with wide field calcium imaging are demonstrated. This reported 3D‐printing technique eliminates the need for cumbersome experimental setups while offering desired material properties.more » « less
An official website of the United States government

