Abstract Here, we systematically review research on teaching knowledge in the context of undergraduate STEM education, with particular attention to what this research reveals about knowledge that is important for evidence-based teaching. Evidence-based teaching can improve student outcomes in undergraduate STEM education. However, the enactment of promising evidence-based teaching strategies depends greatly on the instructor and potentially on the teaching knowledge they are able to deploy. The review includes an overview of prevalent teaching knowledge theory, including pedagogical content knowledge, mathematical knowledge for teaching, and pedagogical knowledge. We compare and contrast teaching knowledge theory and terminology across STEM disciplines in order to build bridges for researchers across disciplines. Our search for peer-reviewed investigations of teaching knowledge in undergraduate science, engineering and mathematics yielded 45 papers. We examined the theoretical frameworks used in each study and analyzed study approaches, comparing across disciplines. Importantly, we also synthesized findings from research conducted in the context of evidence-based teaching. Overall, teaching knowledge research is sparse and siloed by discipline, and we call for collaborative work and better bridge-building across STEM disciplines. Though disciplinary divergences are common in discipline-based education research, the effect is magnified in this research area because the theoretical frameworks are themselves siloed by discipline. Investigations of declarative knowledge were common, and we call for increased attention to knowledge used in the practice of teaching. Finally, there are not many studies examining teaching knowledge in the context of evidence-based teaching, but the existing work suggests that components of pedagogical content knowledge, pedagogical knowledge, and content knowledge influence the implementation of evidence-based teaching. We describe implications for future teaching knowledge research. We also call on those who develop and test evidence-based strategies and curriculum to consider, from the beginning, the teaching knowledge needed for effective implementation.
more »
« less
An introduction to TWG19: Mathematics teaching and teacher practice(s)
Teaching is everywhere, yet much of what is involved in teaching remains hidden, with comprehensive theories lacking. These challenges serve as the backdrop for research on mathematics teaching and the work of Thematic Working Group 19. To make progress, the group has used four domains to organize and consider research on teaching. This paper reviews the contributions and issues that arose in the group at CERME13. We elaborate on how the domains stimulated discussions of the meaning of teaching across papers, and we provide reflections and implications for future work.
more »
« less
- Award ID(s):
- 1760788
- PAR ID:
- 10543247
- Publisher / Repository:
- HAL Id: hal-04395313
- Date Published:
- Format(s):
- Medium: X
- Location:
- Budapest, Hungary
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Past research typically assumes that an instructor is a high school or college instructor, but not both. The mechanisms to obtain teaching credentials for each are also traditionally separate, but some instructors teach at both levels simultaneously or transition between them during their careers. To better understand them, we surveyed instructors with experience in both high school and college math teaching. For our qualitative study, we asked questions centered around the Pedagogical Content Knowledge domains within Mathematical Knowledge for Teaching (Ball et al., 2008; Shulman, 1986). In this paper, we discuss the survey, data collection, coding, and findings on teacher perceptions of their jobs that fall across institutional boundaries.more » « less
-
This Research Full Paper presents our findings of studying the effects of teaching modality on collaborative learning by comparing data from two sections of a Database Systems course offered simultaneously, with one offered fully face-to-face in a classroom setting while the other is offered online through a flipped-classroom model. Both sections utilized a collaborative learning approach where students work on group activities for part of the class meeting. Since the two sections were almost identical except for the teaching modality, we are provided with a unique opportunity to study the effect of teaching modalities on collaborative learning. As part of this study, we analyze four crucial data sources: 1) student performance data from the grade book 2) student performance data from the online learning management platform 3) an end-of-semester survey given by the instructor and 4) an end-of-semester survey given by the university. We extract insights on the impact of teaching modalities on collaborative learning in order to identify factors that can enhance collaborative learning. We also study the effect of teaching modalities on students’ performance. We visualize our findings to differentiate between the two modalities, and draw on the strengths of each section to establish recommendations for the instructors for course improvement efforts.more » « less
-
null (Ed.)ABSTRACT Evidence-based teaching practices (EBTP)—like inquiry-based learning, inclusive teaching, and active learning—have been shown to benefit all students, especially women, first-generation, and traditionally minoritized students in science fields. However, little research has focused on how best to train teaching assistants (TAs) to use EBTP or on which components of professional development are most important. We designed and experimentally manipulated a series of pre-semester workshops on active learning (AL), dividing subjects into two groups. The Activity group worked in teams to learn an AL technique with a workshop facilitator. These teams then modeled the activity with their peers acting as students. In the Evidence group, facilitators modeled the activities with all TAs acting as students. We used a mixed-methods research design (specifically, concurrent triangulation) to interpret pre- and post-workshop and post-semester survey responses. We found that Evidence group participants reported greater knowledge of AL after the workshop than Activity group participants. Activity group participants, on the other hand, found all of the AL techniques more useful than Evidence group participants. These results suggest that actually modeling AL techniques made them more useful to TAs than simply experiencing the same techniques as students—even with the accompanying evidence. This outcome has broad implications for how we provide professional development sessions to TAs and potentially to faculty.more » « less
-
In recent years, professional organizations in the United States have suggested undergraduate mathematics shift away from pure lecture format. Transitioning to a student-centered class is a complex instructional undertaking especially in the proof-based context. In this paper, we share lessons learned from a design-based research project centering instructional elements as objects of design. We focus on how three high leverage teaching practices (HLTP; established in the K-12 literature) can be adapted to the proof context to promote student engagement in authentic proof activity with attention to issues of access and equity of participation. In general, we found that HLTPs translated well to the proof setting, but required increased attention to navigating between formal and informal mathematics, developing precision around mathematical objects, supporting competencies beyond formal proof construction, and structuring group work. We position this paper as complementary to existing research on instructional innovation by focusing not on task trajectories, but on concrete teaching practices that can support successful adaption of student-centered approaches.more » « less
An official website of the United States government

