skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Park Rangers’ Problem: Motion Planning for Sequential Visibility Requirements
Many robot tasks may involve achieving visibility (such as to observe areas of interest) or maintaining occlusion (such as to avoid disturbing other agents). We generally formulate such sequential visibility tasks for 3D worlds, termed the Park Rangers’ Problem, and we develop an approach to solve such tasks offering completeness under certain requirements. Our approach constructs an abstraction based on an exact test for visibility between areas, and multiple tests and relaxations for the nonconvex problem of determining occlusions between areas. We apply a constraint-based planning approach and iteratively refine the abstraction. Finally, we evaluate the approach on simulated visibility scenarios.  more » « less
Award ID(s):
2124010
PAR ID:
10543255
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Proceedings in Advanced Robotics
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we examine the problem of visibility-aware robot navigation among movable obstacles (VANAMO). A variant of the well-known NAMO robotic planning problem, VANAMO puts additional visibility constraints on robot motion and object movability. This new problem formulation lifts the restrictive assumption that the map is fully visible and the object positions are fully known. We provide a formal definition of the VANAMO problem and propose the Look and Manipulate Backchaining (LAMB) algorithm for solving such problems. LAMB has a simple vision-based API that makes it more easily transferable to real-world robot applications and scales to the large 3D environments. To evaluate LAMB, we construct a set of tasks that illustrate the complex interplay between visibility and object movability that can arise in mobile base manipulation problems in unknown environments. We show that LAMB outperforms NAMO and visibility-aware motion planning approaches as well as simple combinations of them on complex manipulation problems with partial observability 
    more » « less
  2. Abstract—Often times, we specify tasks for a robot using tem- poral language that can also span different levels of abstraction. The example command “go to the kitchen before going to the second floor” contains spatial abstraction, given that “floor” consists of individual rooms that can also be referred to in isolation (“kitchen”, for example). There is also a temporal ordering of events, defined by the word “before”. Previous works have used Linear Temporal Logic (LTL) to interpret temporal language (such as “before”), and Abstract Markov Decision Processes (AMDPs) to interpret hierarchical abstractions (such as “kitchen” and “second floor”), separately. To handle both types of commands at once, we introduce the Abstract Product Markov Decision Process (AP-MDP), a novel approach capable of representing non-Markovian reward functions at different levels of abstractions. The AP-MDP framework translates LTL into its corresponding automata, creates a product Markov Decision Process (MDP) of the LTL specification and the environment MDP, and decomposes the problem into subproblems to enable efficient planning with abstractions. AP-MDP performs faster than a non-hierarchical method of solving LTL problems in over 95% of tasks, and this number only increases as the size of the en- vironment domain increases. We also present a neural sequence- to-sequence model trained to translate language commands into LTL expression, and a new corpus of non-Markovian language commands spanning different levels of abstraction. We test our framework with the collected language commands on a drone, demonstrating that our approach enables a robot to efficiently solve temporal commands at different levels of abstraction. 
    more » « less
  3. null (Ed.)
    Given a two-dimensional polygonal space, the multi-robot visibility-based pursuit-evasion problem tasks several pursuer robots with the goal of establishing visibility with an arbitrarily fast evader. The best known complete algorithm for this problem takes time doubly exponential in the number of robots. However, sampling-based techniques have shown promise in generating feasible solutions in these scenarios. One of the primary drawbacks to employing existing sampling-based methods is that existing algorithms have long execution times and high failure rates for complex environments. This paper addresses that limitation by proposing a new algorithm that takes an environment as its input and returns a joint motion strategy which ensures that the evader is captured by one of the pursuers. Starting with a single pursuer, we sequentially construct Sample-Generated Pursuit-Evasion Graphs to create such a joint motion strategy. This sequential graph structure ensures that our algorithm will always terminate with a solution, regardless of the complexity of the environment. We describe an implementation of this algorithm and present quantitative results that show significant improvement in comparison to the existing algorithm. 
    more » « less
  4. Intent-based networking (IBN) promises to simplify the network management and automated orchestration of high-level policies in future networking architectures such as software-defined networking (SDN). However, such abstraction and automation creates new network visibility challenges. Existing SDN network forensics and diagnostics tools operate at a lower level of network abstraction, which makes intent-level reasoning difficult. We present PROVINTENT, a framework extension for SDN control plane tools that accounts for intent semantics. PROVINTENT records the provenance and evolution of intents as the network’s state and apps’ requests change over time and enables reasoning at multiple abstractions. We define an intent provenance model, we implement a proof-of-concept tool, and we evaluate the efficacy of PROVINTENT’s explanatory capabilities by using a representative intent-driven network application. 
    more » « less
  5. Climate change is a pressing threat to planetary well-being that can be addressed only by rapid near-term actions across all sectors. Yet, the cloud computing sector, with its increasingly large carbon footprint, has initiated only modest efforts to reduce emissions to date; its main approach today relies on cloud providers sourcing renewable energy from a limited global pool of options. We investigate how to accelerate cloud computing's efforts. Our approach tackles carbon reduction from a software standpoint by gradually integrating carbon awareness into the cloud abstraction. Specifically, we identify key bottlenecks to software-driven cloud carbon reduction, including (1) the lack of visibility and disaggregated control between cloud providers and users over infrastructure and applications, (2) the immense overhead presently incurred by application developers to implement carbon-aware application optimizations, and (3) the increasing complexity of carbon-aware resource management due to renewable energy variability and growing hardware heterogeneity. To overcome these barriers, we propose an agile approach that federates the responsibility and tools to achieve carbon awareness across different cloud stakeholders. As a key first step, we advocate leveraging the role of application operators in managing large-scale cloud deployments and integrating carbon efficiency metrics into their cloud usage workflow. We discuss various techniques to help operators reduce carbon emissions, such as carbon budgets, service-level visibility into emissions, and configurable-yet-centralized resource management optimizations. 
    more » « less