skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Agile Pathway Towards Carbon-aware Clouds
Climate change is a pressing threat to planetary well-being that can be addressed only by rapid near-term actions across all sectors. Yet, the cloud computing sector, with its increasingly large carbon footprint, has initiated only modest efforts to reduce emissions to date; its main approach today relies on cloud providers sourcing renewable energy from a limited global pool of options. We investigate how to accelerate cloud computing's efforts. Our approach tackles carbon reduction from a software standpoint by gradually integrating carbon awareness into the cloud abstraction. Specifically, we identify key bottlenecks to software-driven cloud carbon reduction, including (1) the lack of visibility and disaggregated control between cloud providers and users over infrastructure and applications, (2) the immense overhead presently incurred by application developers to implement carbon-aware application optimizations, and (3) the increasing complexity of carbon-aware resource management due to renewable energy variability and growing hardware heterogeneity. To overcome these barriers, we propose an agile approach that federates the responsibility and tools to achieve carbon awareness across different cloud stakeholders. As a key first step, we advocate leveraging the role of application operators in managing large-scale cloud deployments and integrating carbon efficiency metrics into their cloud usage workflow. We discuss various techniques to help operators reduce carbon emissions, such as carbon budgets, service-level visibility into emissions, and configurable-yet-centralized resource management optimizations.  more » « less
Award ID(s):
2104548
PAR ID:
10505208
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
HotCarbon '23: Proceedings of the 2nd Workshop on Sustainable Computer Systems
ISBN:
9798400702426
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Location:
Boston MA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Cloud providers are adapting datacenter (DC) capacity to reduce carbon emissions. With hyperscale datacenters exceeding 100 MW individually, and in some grids exceeding 15% of power load, DC adaptation is large enough to harm power grid dynamics, increasing carbon emissions, power prices, or reduce grid reliability. To avoid harm, we explore coordination of DC capacity change varying scope in space and time. In space, coordination scope spans a single datacenter, a group of datacenters, and datacenters with the grid. In time, scope ranges from online to day-ahead. We also consider what DC and grid information is used (e.g. real-time and day-ahead average carbon, power price, and compute backlog). For example, in our proposed PlanShare scheme, each datacenter uses day-ahead information to create a capacity plan and shares it, allowing global grid optimization (over all loads, over entire day). We evaluate DC carbon emissions reduction. Results show that local coordination scope fails to reduce carbon emissions significantly (3.2%–5.4% reduction). Expanding coordination scope to a set of datacenters improves slightly (4.9%–7.3%). PlanShare, with grid-wide coordination and full-day capacity planning, performs the best. PlanShare reduces DC emissions by 11.6%–12.6%, 1.56x–1.26x better than the best local, online approach’s results. PlanShare also achieves lower cost. We expect these advantages to increase as renewable generation in power grids increases. Further, a known full-day DC capacity plan provides a stable target for DC resource management. 
    more » « less
  2. Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions --- equivalent to a drop of 23.3% in our electric grid emissions. 
    more » « less
  3. Traditional datacenter design and optimization for TCO and PUE is based on static views of power grids as well as computational loads. Power grids exhibit increasingly variable price and carbon-emissions, becoming more so as government initiatives drive further decarbonization. The resulting opportunities require dynamic, temporal metrics (eg. not simple averages), flexible systems and intelligent adaptive control. Two research areas represent new opportunities to reduce both carbon and cost in this world of variable power, carbon, and price. First, the design and optimization of flexible datacenters. Second, cloud resource, power, and application management for variable-capacity datacenters. For each, we describe the challenges and potential benefits. 
    more » « less
  4. Reducing buildings’ carbon emissions is an important sustainability challenge. While scheduling flexible building loads has been previously used for a variety of grid and energy optimizations, carbon footprint reduction using such flexible loads poses new challenges since such methods need to balance both energy and carbon costs while also reducing user inconvenience from delaying such loads. This article highlights the potential conflict between electricity prices and carbon emissions and the resulting tradeoffs in carbon-aware and cost-aware load scheduling. To address this tradeoff, we propose GreenThrift, a home automation system that leverages the scheduling capabilities of smart appliances and knowledge of future carbon intensity and cost to reduce both the carbon emissions and costs of flexible energy loads. At the heart of GreenThrift is an optimization technique that automatically computes schedules based on user configurations and preferences. We evaluate the effectiveness of GreenThrift using real-world carbon intensity data, electricity prices, and load traces from multiple locations and across different scenarios and objectives. Our results show that GreenThrift can replicate the offline optimal and retains 97% of the savings when optimizing the carbon emissions. Moreover, we show how GreenThrift can balance the conflict between carbon and cost and retain 95.3% and 85.5% of the potential carbon and cost savings, respectively. 
    more » « less
  5. To mitigate climate change, we must reduce carbon emissions from hyperscale cloud computing. We find that cloud compute servers cause the majority of emissions in a general-purpose cloud. Thus, we motivate designing carbon-efficient compute server SKUs, or GreenSKUs, using recently-available low-carbon server components. To this end, we design and build three GreenSKUs using low-carbon components, such as energy-efficient CPUs, reused old DRAM via CXL, and reused old SSDs. We detail several challenges that limit GreenSKUs, carbon savings at scale and may prevent their adoption by cloud providers. To address these challenges, we develop a novel methodology and associated framework, GSF (GreenSKU Framework), that enables a cloud provider to systematically evaluate a GreenSKU’s carbon savings at scale. We implement GSF within Microsoft Azure’s production constraints to evaluate our three GreenSKUs’ carbon savings. Using GSF, we show that our most carbon-efficient GreenSKU reduces emissions per core by 28% compared to currently-deployed cloud servers. When designing GreenSKUs to meet applications’ performance requirements, we reduce emissions by 15%. When incorporating overall data center overheads, our GreenSKU reduces Azure’s net cloud emissions by 8%. 
    more » « less