skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elemental Abundances in And XIX from Coadded Spectra
Abstract With a luminosity similar to that of Milky Way dwarf spheroidal systems like Sextans, but a spatial extent similar to that of ultra-diffuse galaxies, Andromeda (And) XIX is an unusual satellite of M31. To investigate the origin of this galaxy, we measure chemical abundances for And XIX derived from medium-resolution (R∼ 6000) spectra from the Deep Extragalactic Imaging Multi-Object Spectrograph on the Keck II telescope. We coadd 79 red giant branch stars, grouped by photometric metallicity, in order to obtain a sufficiently high signal-to-noise ratio to measure 20 [Fe/H] and [α/Fe] abundances via spectral synthesis. The latter are the first such measurements for And XIX. The mean metallicity we derive for And XIX places it ∼2σhigher than the present-day stellar mass–metallicity relation for Local Group dwarf galaxies, potentially indicating it has experienced tidal stripping. A loss of gas and associated quenching during such a process, which prevents the extended star formation necessary to produce shallow [α/Fe]–[Fe/H] gradients in massive systems, is also consistent with the steeply decreasing [α/Fe]–[Fe/H] trend we observe. In combination with the diffuse structure and disturbed kinematic properties of And XIX, this suggests tidal interactions, rather than galaxy mergers, are strong contenders for its formation.  more » « less
Award ID(s):
2233781
PAR ID:
10543332
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
NASA ADS
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
972
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While the Milky Way nuclear star cluster (MW NSC) has been studied extensively, how it formed is uncertain. Studies have shown it contains a solar and supersolar metallicity population that may have formed in situ, along with a subsolar-metallicity population that may have formed via mergers of globular clusters and dwarf galaxies. Stellar abundance measurements are critical to differentiate between formation scenarios. We present new measurements of [M/H] and α -element abundances [ α /Fe] of two subsolar-metallicity stars in the Galactic center. These observations were taken with the adaptive-optics-assisted high-resolution ( R = 24,000) spectrograph NIRSPEC in the K band (1.8–2.6 micron). These are the first α -element abundance measurements of subsolar-metallicity stars in the MW NSC. We measure [M/H] = − 0.59 ± 0.11, [ α /Fe] = 0.05 ± 0.15 and [M/H] = − 0.81 ± 0.12, [ α /Fe] = 0.15 ± 0.16 for the two stars at the Galactic center; the uncertainties are dominated by systematic uncertainties in the spectral templates. The stars have an [ α /Fe] in between the [ α /Fe] of globular clusters and dwarf galaxies at similar [M/H] values. Their abundances are very different than the bulk of the stars in the nuclear star cluster. These results indicate that the subsolar-metallicity population in the MW NSC likely originated from infalling dwarf galaxies or globular clusters and are unlikely to have formed in situ. 
    more » « less
  2. Dwarf galaxy star formation histories are theoretically expected to be bursty, potentially leaving distinct imprints on their chemical evolution. We propose that episodic starbursts with quiescent periods longer than ~100 Myr should lead to discontinuous tracks in a dwarf galaxy’s [ α /Fe]-[Fe/H] chemical abundance plane, with metallicity gaps as large as 0.3-0.5 dex at [Fe/H] = -2. This occurs due to continued Fe production by Type Ia supernovae during quiescent periods. We demonstrate that Gaussian mixture models can statistically distinguish discontinuous and continuous tracks based on the Akaike Information Criterion. Applying this method to APOGEE observations of the Sculptor dSph galaxy suggests an episodic star formation history with ~300 Myr quiescent periods. While current dwarf galaxy datasets are limited by small spectroscopic sample sizes, future surveys and extremely large telescopes will enable determining large numbers of precise chemical abundances, opening up the investigation of very short timescales in early dwarf galaxy formation. This unprecedentedly high time resolution of dwarf galaxy formation in the early Universe has important implications for understanding both reionization in the early Universe and the episodic star formation cycle of dwarf galaxies. 
    more » « less
  3. Abstract Understanding the chemical enrichment of different elements is crucial to gaining a complete picture of galaxy chemical evolution. In this study, we present a new sample of 46 low-redshift, low-mass star-forming galaxies atM*∼ 108−10Malong with two quiescent galaxies atM*∼ 108.8Mobserved with the Keck Cosmic Web Imager, aiming to investigate the chemical evolution of galaxies in the transition zone between Local Group satellites and massive field galaxies. We develop a novel method to simultaneously determine stellar abundances of iron and magnesium in star-forming galaxies. With the gas-phase oxygen abundance (O/H)gmeasured using the strong-line method, we are able to make the first-ever apples-to-apples comparison ofαelements in the stars and the interstellar medium. We find that the [Mg/H]*–[O/H]grelation is much tighter than the [Fe/H]*–[O/H]grelation, which can be explained by the similar production processes ofαelements. Most galaxies in our sample exhibit higher [O/H]gthan [Fe/H]*and [Mg/H]*. In addition, we construct mass–metallicity relations (MZRs) measured as three different elements (Fe*, Mg*, Og). Compared to the gas O-MZR, the stellar Fe- and Mg-MZRs show larger scatter driven by variations in specific star formation rates (sSFR), with star-forming galaxies exhibiting higher sSFR and lower stellar abundances at fixed mass. The excess of [O/H]gcompared to stellar abundances as well as the anticorrelation between sSFR and stellar abundance suggests that galaxy quenching of intermediate-mass galaxies atM*∼ 108−10Mis primarily driven by starvation. 
    more » « less
  4. null (Ed.)
    ABSTRACT Deciphering the distribution of metals throughout galaxies is fundamental in our understanding of galaxy evolution. Nearby, low-metallicity, star-forming dwarf galaxies, in particular, can offer detailed insight into the metal-dependent processes that may have occurred within galaxies in the early Universe. Here, we present VLT/MUSE observations of one such system, JKB 18, a blue diffuse dwarf galaxy with a metallicity of only 12 + log(O/H)=7.6 ± 0.2 (∼0.08 Z⊙). Using high spatial resolution integral-field spectroscopy of the entire system, we calculate chemical abundances for individual H ii regions using the direct method and derive oxygen abundance maps using strong-line metallicity diagnostics. With large-scale dispersions in O/H, N/H, and N/O of ∼0.5–0.6 dex and regions harbouring chemical abundances outside this 1σ distribution, we deem JKB 18 to be chemically inhomogeneous. We explore this finding in the context of other chemically inhomogeneous dwarf galaxies and conclude that neither the accretion of metal-poor gas, short mixing time-scales or self-enrichment from Wolf–Rayet stars are accountable. Using a galaxy-scale, multiphase, hydrodynamical simulation of a low-mass dwarf galaxy, we find that chemical inhomogeneities of this level may be attributable to the removal of gas via supernovae and the specific timing of the observations with respect to star formation activity. This study not only draws attention to the fact that dwarf galaxies can be chemically inhomogeneous, but also that the methods used in the assessment of this characteristic can be subject to bias. 
    more » « less
  5. Abstract Andromeda XVIII is an isolated dwarf galaxy 579 kpc away from the nearest large galaxy, M31. It is a candidate “backsplash galaxy” that might have been affected by a close passage to M31. We present new Keck/DEIMOS spectroscopy of Andromeda XVIII to assess the likelihood that it is a backsplash galaxy. We estimated the velocities, metallicities ([Fe/H]), andα-enhancements ([α/Fe]) for 56 probable members. Based on the abundances of 38 stars with low errors (δ[Fe/H] < 0.3), parameters for the simplest chemical evolution models were estimated using the maximum likelihood coupled with a Markov Chain Monte Carlo (MCMC) method. The metallicity distribution is inconsistent with these models, due to a sharp metal-rich cutoff. We estimated Andromeda XVIII’s mean heliocentric velocity, rotation velocity, position angle of the rotation axis, and velocity dispersion using the maximum likelihood coupled with an MCMC. There is no evidence for bulk rotation, though subpopulations might be rotating. The mean heliocentric velocity is −337.2 km s−1, such that the line-of-sight velocity relative to M31 is lower than the escape velocity from M31. Together, the metallicity distribution and the mean velocity are consistent with a sudden interruption of star formation. For possible causes of this quenching, we considered gas loss due to ram pressure stripping during a close passage by M31 or due to a past major merger. However, we cannot rule out internal feedback (i.e., a terminal wind). 
    more » « less