There is a huge lack of qualified personnel in advanced manufacturing in the U.S. Midwest stemming from a lack of student interest compounded with a lack of experienced teachers who usually motivate students. This paper describes the findings of an NSF RET project at Bowling Green State University that successfully addresses the common need to produce STEM graduates in the advanced manufacturing area. The NSF-RET project’s unique hands-on research experience combined with local industry collaboration prepare future STEM teachers, who can interject research experience in a classroom learning and tie that with the real-world implementations. The project cements the partnership among BGSU, local high schools, and community colleges in Ohio to address the common need of producing STEM graduates in advanced manufacturing area. This project addresses the workforce needs by producing competent high schools and community college educators, who are capable to blend research with educational activities at their institutions, motivate students for STEM degrees, and build long-term collaborative partnerships in the region. This project focused on two goals: (1) explore a sustainable educational model that connects high schools, community colleges, university, and industry; and (2) play a transformational role in preparing future leaders in advanced manufacturing. This paper explains the need, scope, and nature of the curriculum development process through engaging K-14 educators. This paper will share some of their successful research projects, how they translated their research into actionable curriculum modules, and some lessons learned from implementations. 
                        more » 
                        « less   
                    
                            
                            Enabling K-14 Educators in Developing and Deploying Advanced Manufacturing Curricula
                        
                    
    
            Manufacturing is undergoing rapid changes due to the demands of product complexity and variety, and therefore factories are demanded to become smarter and more efficient. This transformation is known as advanced manufacturing and will require a new generation of skilled employees. There is a huge lack of qualified personnel in advanced manufacturing stemming from a lack of student interest compounded with a lack of experienced teachers who usually motivate students. This paper describes the findings of an NSF RET project at an US university that successfully addresses the common need to produce STEM graduates in the advanced manufacturing area. We recruited fifteen high school and community college STEM educators for a six-week immersive summer research experience in the state-of-the-art robotics laboratory. At the end of their research workshop, they developed customized hands-on advanced manufacturing curricula for their students. This project produced fifteen competent high school and community college educators, who are capable of blending research with educational activities at their institutions, motivating students for STEM degrees, and building long-term collaborative partnerships in the region. This paper will share some of their successful research projects, how they translated their research into actionable curriculum modules, and some lessons learned from implementations. This paper will also explain the evaluation process and share the results. In view of the pre-survey and post-survey data analyses, it can be concluded that educator participants of the program increased their knowledge and research experiences at very high-quality research facilities and under expert guidance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2206952
- PAR ID:
- 10543364
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Format(s):
- Medium: X
- Location:
- Portland, Oregon
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In early 2020, a research collaboration between a college of engineering, a research institute, a pre-college STEM program, a rural school district, and the local advanced manufacturing industry began. The goal of this Innovative Technology Experiences for Students and Teachers (ITEST) project was to create community-based engineering design experiences for underserved middle school students (grades 6-8) from rural NC aimed to improve their cognitive (STEM content knowledge and career awareness) and non-cognitive (interest, self-efficacy, and STEM identity) outcomes, and ultimately lead to their increased participation in STEM fields, particularly engineering. The project leverages strategic partnerships to create a 3-part, grade-level specific Engineering Design and Exploration course that engages middle school students in authentic engineering design experiences that allow them to research, design, and problem-solve in a simulated advanced manufacturing environment. Shortly after receiving university approval to begin the research process, progress was halted due to an unprecedented global health crisis. The school district was closed for several weeks as administrators and teachers prepared to transition to remote learning. In addition, the district experienced unexpected teacher and administrator turnover. In the wake of such uncertainty, the partners have pivoted their research design to work more closely with industry partners while still maintaining an active relationship with the school district as they rebuild. This paper will describe the challenges faced, strategies employed, and lessons learned during the course development and implementation process.more » « less
- 
            The goal of this program, funded by the National Science Foundation Advanced Technological Education (NSF ATE) program, is to provide additional professional and technical skills to cohorts of high school students through a Saturday Program. The program has provided inner-city high school students with out-of-school, hands-on educational experiences focusing on both professional and technical skills. Participant demographics will be discussed in this paper as diversity is a key objective of the program. The program utilizes industry-driven, project-based learning (PBL) and lessons in career and college readiness to prepare students for the workforce. Each student session consists of five consecutive Saturdays and is taught by a team of high school teachers, community college faculty, and instructors with expertise in professional skills, teambuilding, leadership, technical writing, coding, and STEM disciplines. The program is held on community college campuses as a way to show students that they are welcome in a college environment, which has inspired participants to have confidence in their own abilities to attend college and pursue educational and career goals in technology fields. Principals from participating high schools have commented that students who attended the Program have demonstrated an improvement in their academics and behavior due to the knowledge of professional and technical skills that they have gleaned from the program. The program’s leadership team disseminates best practices through presentations, social media, publications, and workshops at national conferences. The virtual four-day Summer Teachers’ Workshop allows high school and community college educators from throughout the United States to experience the same program that is used for the high school students. Although the workshop is virtual, participants are provided with materials and supplies, so they have the same hands-on experiences as the students in the Saturday program.more » « less
- 
            null (Ed.)Additive manufacturing, also known as 3D printing, is commonly shown to students through low cost 3D printers. Many high school and community college educators have access to 3D printers at their home institutions. In this study, Research Experience for Teachers (RET) participants developed a set of modules which can be integrated with a design project given at both the high school and college curriculum levels to explore the concepts of manufacturing and design (e.g., dimensioning and tolerancing, Design for X, Proof of Concept, etc.). The study identified a product in which these concepts can be integrated, and developed a set of constraints the students need to consider in their design project. It was the goal of the RET participants to identify best practices for teaching 3D printing and develop projects to explain design and manufacturing concepts through 3D printing.more » « less
- 
            null (Ed.)With the rise in manufacturing jobs in the United States, companies are having a difficult time filling the job openings for skilled production workers. It takes an average of two months to fill these positions. This study is designed to introduce the fundamental concepts of manufacturing and demonstrate these concepts through hands-on simulation of the different manufacturing paradigms. The paper is the result of the authors’ participation in a six-week NSF RET program at Penn State Behrend where high school and community college educators worked together to develop curriculum for high school students. Lesson plans, handouts, and required material lists were developed and tested. Surveys conducted after the simulation experiment provided improvements for the exercise. The simulations were then implemented in high school classrooms to improve the awareness of manufacturing among high school students and develop their technical and professional skills. By understanding the evolution of manufacturing and becoming aware of the need to gain advanced skills required for today, students will be encouraged to consider pursuing careers in manufacturing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    