skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shockingly Bright Warm Carbon Monoxide Molecular Features in the Supernova Remnant Cassiopeia A Revealed by JWST
Abstract We present JWST NIRCam (F356W and F444W filters) and MIRI (F770W) images and NIRSpec Integral Field Unit (IFU) spectroscopy of the young Galactic supernova remnant Cassiopeia A (Cas A) to probe the physical conditions for molecular CO formation and destruction in supernova ejecta. We obtained the data as part of a JWST survey of Cas A. The NIRCam and MIRI images map the spatial distributions of synchrotron radiation, Ar-rich ejecta, and CO on both large and small scales, revealing remarkably complex structures. The CO emission is stronger at the outer layers than the Ar ejecta, which indicates the re-formation of CO molecules behind the reverse shock. NIRSpec-IFU spectra (3–5.5μm) were obtained toward two representative knots in the NE and S fields that show very different nucleosynthesis characteristics. Both regions are dominated by the bright fundamental rovibrational band of CO in the two R and P branches, with strong [Arvi] and relatively weaker, variable strength ejecta lines of [Siix], [Caiv], [Cav], and [Mgiv]. The NIRSpec-IFU data resolve individual ejecta knots and filaments spatially and in velocity space. The fundamental CO band in the JWST spectra reveals unique shapes of CO, showing a few tens of sinusoidal patterns of rovibrational lines with pseudocontinuum underneath, which is attributed to the high-velocity widths of CO lines. Our results with LTE modeling of CO emission indicate a temperature of ∼1080 K and provide unique insight into the correlations between dust, molecules, and highly ionized ejecta in supernovae and have strong ramifications for modeling dust formation that is led by CO cooling in the early Universe.  more » « less
Award ID(s):
1813825
PAR ID:
10543385
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
The Astrophysical Journal Letters
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
969
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract JWST observations of the young Galactic supernova remnant Cassiopeia A revealed an unexpected structure seen as a green emission feature in colored composite MIRI F1130W and F1280W images—hence dubbed the Green Monster—that stretches across the central parts of the remnant in projection. Combining the kinematic information from NIRSpec and the MIRI Medium Resolution Spectrograph with the multiwavelength imaging from NIRCam and MIRI, we associate the Green Monster with circumstellar material (CSM) that was lost during an asymmetric mass-loss phase. MIRI images are dominated by dust emission, but their spectra show emission lines from Ne, H, and Fe with low radial velocities indicative of a CSM nature. An X-ray analysis of this feature in a companion paper supports its CSM nature and detects significant blueshifting, thereby placing the Green Monster on the nearside, in front of the Cas A supernova remnant. The most striking features of the Green Monster are dozens of almost perfectly circular 1″–3″ sized holes, most likely created by interaction between high-velocity supernova ejecta material and the CSM. Further investigation is needed to understand whether these holes were formed by small 8000–10,500 km s−1N-rich ejecta knots that penetrated and advanced out ahead of the remnant’s 5000–6000 km s−1outer blast wave or by narrow ejecta fingers that protrude into the forward-shocked CSM. The detection of the Green Monster provides further evidence of the highly asymmetric mass loss that Cas A’s progenitor star underwent prior to its explosion. 
    more » « less
  2. Abstract We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor’s oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant’s interior pockmarked with small (∼1″) round holes formed by ≲0.″1 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼0.″1 and 1′ reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3μm) from the neutron star in Cas A’s center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects. 
    more » « less
  3. Abstract We present a JWST/MIRI low-resolution mid-infrared (MIR) spectroscopic observation of the normal Type Ia supernova (SN Ia) SN 2021aefx at +323 days past rest-frameB-band maximum light. The spectrum ranges from 4 to 14μm and shows many unique qualities, including a flat-topped [Ariii] 8.991μm profile, a strongly tilted [Coiii] 11.888μm feature, and multiple stable Ni lines. These features provide critical information about the physics of the explosion. The observations are compared to synthetic spectra from detailed non–local thermodynamic equilibrium multidimensional models. The results of the best-fitting model are used to identify the components of the spectral blends and provide a quantitative comparison to the explosion physics. Emission line profiles and the presence of electron capture elements are used to constrain the mass of the exploding white dwarf (WD) and the chemical asymmetries in the ejecta. We show that the observations of SN 2021aefx are consistent with an off-center delayed detonation explosion of a near–Chandrasekhar mass (MCh) WD at a viewing angle of −30° relative to the point of the deflagration to detonation transition. From the strengths of the stable Ni lines, we determine that there is little to no mixing in the central regions of the ejecta. Based on both the presence of stable Ni and the Ar velocity distributions, we obtain a strict lower limit of 1.2Mfor the initial WD, implying that most sub-MChexplosions models are not viable models for SN 2021aefx. The analysis here shows the crucial importance of MIR spectra in distinguishing between explosion scenarios for SNe Ia. 
    more » « less
  4. Abstract We present JWST observations of the Crab Nebula, the iconic remnant of the historical SN 1054. The observations include NIRCam and MIRI imaging mosaics plus MIRI/MRS spectra that probe two select locations within the ejecta filaments. We derive a high-resolution map of dust emission and show that the grains are concentrated in the innermost, high-density filaments. These dense filaments coincide with multiple synchrotron bays around the periphery of the Crab's pulsar wind nebula (PWN). We measure synchrotron spectral index changes in small-scale features within the PWN’s torus region, including the well-known knot and wisp structures. The index variations are consistent with Doppler boosting of emission from particles with a broken power-law distribution, providing the first direct evidence that the curvature in the particle injection spectrum is tied to the acceleration mechanism at the termination shock. We detect multiple nickel and iron lines in the ejecta filaments and use photoionization models to derive nickel-to-iron abundance ratios that are a factor of 3–8 higher than the solar ratio. We also find that the previously reported order-of-magnitude higher Ni/Fe values from optical data are consistent with the lower values from JWST when we reanalyze the optical emission using updated atomic data and account for local extinction from dust. We discuss the implications of our results for understanding the nature of the explosion that produced the Crab Nebula and conclude that the observational properties are most consistent with a low-mass Fe core-collapse supernova, even though an electron-capture explosion cannot be ruled out. 
    more » « less
  5. Abstract We report the discovery of two companion sources to a strongly lensed galaxy SPT0418-47 (“ring”) at redshift 4.225, targeted by the JWST Early Release Science program. We confirm that these sources are at a similar redshift to the ring based on Hαdetected in the NIRSpec spectrum and [Cii]λ158μm line from the Atacama Large Millimeter/submillimeter Array (ALMA). Using multiple spectral lines detected in JWST/NIRSpec, the rest-frame optical to infrared images from NIRCam and MIRI and far-infrared dust continuum detected by ALMA, we argue that the newly discovered sources are actually lensed images of the same companion galaxy SPT0418-SE, hereafter referred to “SE,” located within 5 kpc in the source plane of the ring. The star formation rate derived using [Cii] and the dust continuum puts a lower limit of 17Myr−1, while the SFRis estimated to be >2 times lower, thereby confirming that SE is a dust-obscured star-forming galaxy. Analysis using optical strong line diagnostics suggests that SE has near-solar elemental abundance, while the ring appears to have supersolar metallicity O/H and N/O. We attempt to reconcile the high metallicity in this system by invoking early onset of star formation with continuous high star-forming efficiency or by suggesting that optical strong line diagnostics need revision at high redshift. We suggest that SPT0418-47 resides in a massive dark-matter halo with yet-to-be-discovered neighbors. This work highlights the importance of joint analysis of JWST and ALMA data for a deep and complete picture of the early universe. 
    more » « less