Mononuclear Fe( iii ) Schiff base antipyrine complexes for catalytic hydrogen generation
Mononuclear Fe(iii) complexes containing an antipyrine Schiff base ligand were prepared and fully characterized, demonstrating a planar tetradentate coordination geometry. The resulting complexes are active for HER with possible ligand cooperativity.
more »
« less
- Award ID(s):
- 1749800
- PAR ID:
- 10543389
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Dalton Transactions
- ISSN:
- 1477-9226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Predicting the structure of ligands bound to proteins is a foundational problem in modern biotechnology and drug discovery, yet little is known about how to combine the predictions of protein‐ligand structure (poses) produced by the latest deep learning methods to identify the best poses and how to accurately estimate the binding affinity between a protein target and a list of ligand candidates. Further, a blind benchmarking and assessment of protein‐ligand structure and binding affinity prediction is necessary to ensure it generalizes well to new settings. Towards this end, we introduceMULTICOM_ligand, a deep learning‐based protein‐ligand structure and binding affinity prediction ensemble featuring structural consensus ranking for unsupervised pose ranking and a new deep generative flow matching model for joint structure and binding affinity prediction. Notably,MULTICOM_ligand ranked among the top‐5 ligand prediction methods in both protein‐ligand structure prediction and binding affinity prediction in the 16th Critical Assessment of Techniques for Structure Prediction (CASP16), demonstrating its efficacy and utility for real‐world drug discovery efforts. The source code for MULTICOM_ligand is freely available on GitHub.more » « less
An official website of the United States government

