skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthetic light curves and spectra from a self-consistent 2D simulation of an ultra-strippped supernova
ABSTRACT Spectroscopy is an important tool for providing insights into the structure of core-collapse supernova explosions. We use the Monte Carlo radiative transfer code artis to compute synthetic spectra and light curves based on a two-dimensional explosion model of an ultra-stripped supernova. These calculations are designed both to identify observable fingerprints of ultra-stripped supernovae and as a proof of principle for using synthetic spectroscopy to constrain the nature of stripped-envelope supernovae more broadly. We predict characteristic spectral and photometric features for our ultra-stripped explosion model, and find that these do not match observed ultra-stripped supernova candidates like SN 2005ek. With a peak bolometric luminosity of $$6.8\times 10^{41}\, \mathrm{erg}\, \mathrm{s}^{-1}$$, a peak magnitude of $$-15.9\, \mathrm{mag}$$ in R band, and Δm15,R = 3.50, the model is even fainter and evolves even faster than SN 2005ek as the closest possible analogue in photometric properties. The predicted spectra are extremely unusual. The most prominent features are Mg ii lines at $$2 {,}800\, {\mathring{\rm A}}$$ and $$4 {,}500\, {\mathring{\rm A}}$$ and the infrared Ca triplet at late times. The Mg lines are sensitive to the multidimensional structure of the model and are viewing-angle dependent. They disappear due to line blanketing by iron group elements in a spherically averaged model with additional microscopic mixing. In future studies, multi-D radiative transfer calculations need to be applied to a broader range of models to elucidate the nature of observed Type Ib/c supernovae.  more » « less
Award ID(s):
1927130
PAR ID:
10543460
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MNRAS
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2185 to 2197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present high-cadence photometric and low-resolution (R  $$\sim$$ 400–700) optical spectroscopic observations of Type IIP supernova, SN 2018pq, which exploded on the outskirts of the galaxy IC 3896A. The optically thick phase (‘plateau’) lasts approximately 97 d, the plateau duration of normal Type IIP supernovae. SN 2018pq has a V-band absolute magnitude of $$-16.42 \pm 0.01$$ mag at 50 d, resembles normal-luminous supernova, and the V-band decline rate of 0.42 $$\pm$$ 0.06 mag 50 d$$^{-1}$$ during the plateau phase. A steeper decline rate of 11.87 $$\pm$$ 1.68 mag 100 d$$^{-1}$$ was observed compared to that of typical Type IIP supernovae during the transition between plateau to nebular phase. We employ detailed radiative transfer spectra modelling, tardis, to reveal the photospheric temperature and velocity at two spectral epochs. The well-fitted model spectra indicate SN 2018pq is a spectroscopically normal Type IIP supernova. Semi-analytical light curve modelling suggests the progenitor as a red supergiant star with an ejecta mass of $$\sim$$11 $${\rm M}_\odot$$ and an initial radius of 424 $${\rm R}_\odot$$. On the contrary, hydrodynamical modelling suggests a higher mass progenitor between 14 and 16 $${\rm M}_\odot$$. 
    more » « less
  2. Abstract We present panchromatic optical + near-infrared (NIR) + mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from +11 to +42 day past maximum light. We detect forbidden emission lines in the MIR at these early times while the optical and NIR are dominated by permitted lines with an absorption component. Panchromatic spectra at early times can thus simultaneously show nebular and photospheric lines, probing both inner and outer layers of the ejecta. We identify spectral lines not seen before in SN Iax, including [Mgii] 4.76μm, [Mgii] 9.71μm, [Neii] 12.81μm, and isolated Oi2.76μm that traces unburned material. Forbidden emission lines of all species are centrally peaked with similar kinematic distributions, indicating that the ejecta are well mixed in both SN 2024pxl and SN 2024vjm, a hallmark of pure deflagration explosion models. Radiative transfer modeling of SN 2024pxl shows good agreement with a weak deflagration of a near-Chandrasekhar-mass white dwarf, but additional IR flux is needed to match the observations, potentially attributable to a surviving remnant. Similarly, we find SN 2024vjm is also best explained by a weak deflagration model, despite the large difference in luminosity between the two supernovae. Future modeling should push to even weaker explosions and include the contribution of a bound remnant. Our observations demonstrate the diagnostic power of panchromatic spectroscopy for unveiling explosion physics in thermonuclear supernovae. 
    more » « less
  3. ABSTRACT We present observations of SN 2020fqv, a Virgo-cluster type II core-collapse supernova (CCSN) with a high temporal resolution light curve from the Transiting Exoplanet Survey Satellite (TESS) covering the time of explosion; ultraviolet (UV) spectroscopy from the Hubble Space Telescope (HST) starting 3.3 d post-explosion; ground-based spectroscopic observations starting 1.1 d post-explosion; along with extensive photometric observations. Massive stars have complicated mass-loss histories leading up to their death as CCSNe, creating circumstellar medium (CSM) with which the SNe interact. Observations during the first few days post-explosion can provide important information about the mass-loss rate during the late stages of stellar evolution. Model fits to the quasi-bolometric light curve of SN 2020fqv reveal  0.23 M⊙ of CSM confined within  1450 R⊙ (1014 cm) from its progenitor star. Early spectra (<4 d post-explosion), both from HST and ground-based observatories, show emission features from high-ionization metal species from the outer, optically thin part of this CSM. We find that the CSM is consistent with an eruption caused by the injection of ∼5 × 1046 erg into the stellar envelope ∼300 d pre-explosion, potentially from a nuclear burning instability at the onset of oxygen burning. Light-curve fitting, nebular spectroscopy, and pre-explosion HST imaging consistently point to a red supergiant (RSG) progenitor with $$M_{\rm ZAMS}\approx 13.5\!-\!15 \, \mathrm{M}_{\odot }$$, typical for SN II progenitor stars. This finding demonstrates that a typical RSG, like the progenitor of SN 2020fqv, has a complicated mass-loss history immediately before core collapse. 
    more » « less
  4. ABSTRACT The ultraviolet (UV) and near-infrared (NIR) photometric and optical spectroscopic observations of SN 2020acat covering ∼250 d after explosion are presented here. Using the fast rising photometric observations, spanning from the UV to NIR wavelengths, a pseudo-bolometric light curve was constructed and compared to several other well-observed Type IIb supernovae (SNe IIb). SN 2020acat displayed a very short rise time reaching a peak luminosity of $$\mathrm{{\rm Log}_{10}}(L) = 42.49 \pm 0.17 \, \mathrm{erg \, s^{-1}}$$ in only ∼14.6 ± 0.3 d. From modelling of the pseudo-bolometric light curve, we estimated a total mass of 56Ni synthesized by SN 2020acat of MNi = 0.13 ± 0.03 M⊙, with an ejecta mass of Mej = 2.3 ± 0.4 M⊙ and a kinetic energy of Ek = 1.2 ± 0.3 × 1051 erg. The optical spectra of SN 2020acat display hydrogen signatures well into the transitional period (≳ 100 d), between the photospheric and the nebular phases. The spectra also display a strong feature around 4900  Å that cannot be solely accounted for by the presence of the Fe ii 5018 line. We suggest that the Fe ii feature was augmented by He i 5016 and possibly by the presence of N ii 5005. From both photometric and spectroscopic analysis, we inferred that the progenitor of SN 2020acat was an intermediate-mass compact star with an MZAMS of 15–20 M⊙. 
    more » « less
  5. We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from −16.5 to −19 mag. Notably, SN 2023utc is the faintest Type Ibn SN discovered to date, with an exceptionally lowr-band absolute magnitude of −16.4 mag. The pseudo-bolometric light curves peak at (1 − 10)×1042erg s−1, with total radiated energies on the order of (1 − 10)×1048erg. Spectroscopically, these SNe display a relatively slow spectral evolution. The early spectra are characterised by a hot blue continuum and prominent He Iemission lines. The early spectra also show blackbody temperatures exceeding 10 000 K, with a subsequent decline in temperature during later phases. Narrow He Ilines, which are indicative of unshocked circumstellar material (CSM), show velocities of approximately 1000 km s−1. The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Our light curve modelling yielded estimates for the ejecta mass (Mej) in the range 1 − 3 Mwith kinetic energies (EKin) of (0.1 − 1)×1050erg. The inferred CSM mass ranges from 0.2 to 1 M. These findings are consistent with expectations for core collapse events arising from relatively massive envelope-stripped progenitors. 
    more » « less