skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Free-Floating Planets, the Einstein Desert, and 'OUMUAMUA
We complete the survey for finite-source/point-lens (FSPL) giant-source events in 2016--2019 KMTNet microlensing data. The 30 FSPL events show a clear gap in Einstein radius, $$9 \mu{as} < \theta_{E} < 26 \mu{as}$$, which is consistent with the gap in Einstein timescales near $$t_{E} \sim 0.5$$ days found by Mróz et al. (2017) in an independent sample of point-source/point-lens (PSPL) events. We demonstrate that the two surveys are consistent. We estimate that the 4 events below this gap are due to a power-law distribution of free-floating planet candidates (FFPs) $$dN_{FFP}/d log M = (0.4 \pm 0.2)(M/38~M_{\oplus})^{-p}$$/star, with $$0.9 \lesssim p \lesssim 1.2$$. There are substantially more FFPs than known bound planets, implying that the bound planet power-law index $$\gamma = 0.6$$ is likely shaped by the ejection process at least as much as by formation. The mass density per decade of FFPs in the Solar neighborhood is of the same order as that of `Oumuamua-like objects. In particular, if we assume that `Oumuamua is part of the same process that ejected the FFPs to very wide or unbound orbits, the power-law index is $$p = 0.89 \pm 0.06$$. If the Solar System's endowment of Neptune-mass objects in Neptune-like orbits is typical, which is consistent with the results of \citet{wide-orbit}, then these could account for a substantial fraction of the FFPs in the Neptune-mass range.  more » « less
Award ID(s):
2108414
PAR ID:
10543466
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
The Korean Astronomical Society
Date Published:
Journal Name:
Journal of the Korean Astronomical Society
ISSN:
1225-4614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We measure the Einstein radius of the single-lens microlensing event KMT-2022-BLG-2397 to beθE= 24.8 ± 3.6μas, placing it at the upper shore of the Einstein Desert, 9 ≲θE/μas ≲ 25, between free-floating planets (FFPs) and bulge brown dwarfs (BDs). In contrast to the six BD (25 ≲θE≲ 50) events presented by Gould et al. (2022), which all had giant-star source stars, KMT-2022-BLG-2397 has a dwarf-star source, with angular radiusθast∼ 0.9μas. This prompts us to study the relative utility of dwarf and giant sources for characterizing FFPs and BDs from finite-source point-lens (FSPL) microlensing events. We find “dwarfs” (including main-sequence stars and subgiants) are likely to yield twice as manyθEmeasurements for BDs and a comparable (but more difficult to quantify) improvement for FFPs. We show that neither current nor planned experiments will yield complete mass measurements of isolated bulge BDs, nor will any other planned experiment yield as manyθEmeasurements for these objects as the Korea Microlensing Telescope (KMT). Thus, the currently anticipated 10 yr KMT survey will remain the best way to study bulge BDs for several decades to come. 
    more » « less
  2. Aims. We investigate the data collected by the high-cadence microlensing surveys during the 2022 season in search of planetary signals appearing in the light curves of microlensing events. From this search, we find that the lensing event MOA-2022-BLG-249 exhibits a brief positive anomaly that lasted for about one day, with a maximum deviation of ~0.2 mag from a single-source, single-lens model. Methods. We analyzed the light curve under the two interpretations of the anomaly: one originated by a low-mass companion to the lens (planetary model) and the other originated by a faint companion to the source (binary-source model). Results. We find that the anomaly is better explained by the planetary model than the binary-source model. We identified two solutions rooted in the inner-outer degeneracy and for both of them, the estimated planet-to-host mass ratio, q ~ 8 × 10 −5 , is very small. With the constraints provided by the microlens parallax and the lower limit on the Einstein radius, as well as the blend-flux constraint, we find that the lens is a planetary system, in which a super-Earth planet, with a mass of (4.83 ± 1.44) Μ ⊕ , orbits a low-mass host star, with a mass of (0.18 ± 0.05) M ⊙ , lying in the Galactic disk at a distance of (2.00 ± 0.42) kpc. The planet detection demonstrates the elevated microlensing sensitivity of the current high-cadence lensing surveys to low-mass planets. 
    more » « less
  3. Aims. The light curve of the microlensing event KMT-2021-BLG-1898 exhibits a short-term central anomaly with double-bump features that cannot be explained by the usual binary-lens or binary-source interpretations. With the aim of interpreting the anomaly, we analyze the lensing light curve under various sophisticated models. Methods. We find that the anomaly is explained by a model, in which both the lens and source are binaries (2L2S model). For this interpretation, the lens is a planetary system with a planet/host mass ratio of q ~ 1.5 × 10 −3 , and the source is a binary composed of a turn off or a subgiant star and a mid K dwarf. The double-bump feature of the anomaly can also be depicted by a triple-lens model (3L1S model), in which the lens is a planetary system containing two planets. Among the two interpretations, the 2L2S model is favored over the 3L1S model not only because it yields a better fit to the data, by ∆ χ 2 = [14.3−18.5], but also the Einstein radii derived independently from the two stars of the binary source result in consistent values. According to the 2L2S interpretation, KMT-2021-BLG-1898 is the third planetary lensing event occurring on a binary stellar system, following MOA-2010-BLG-117 and KMT-2018-BLG-1743. Results. Under the 2L2S interpretation, we identify two solutions resulting from the close-wide degeneracy in determining the planet-host separation. From a Bayesian analysis, we estimate that the planet has a mass of ~0.7−0.8 M J , and it orbits an early M dwarf host with a mass of ~0.5 M ⊙ . The projected planet-host separation is ~1.9 AU and ~3.0 AU according to the close and wide solutions, respectively. 
    more » « less
  4. Aims. Light curves of microlensing events occasionally deviate from the smooth and symmetric form of a single-lens single-source event. While most of these anomalous events can be accounted for by employing a binary-lens single-source (2L 1S) or a single-lens binary-source (1L2S) framework, it is established that a small fraction of events remain unexplained by either of these interpretations. We carried out a project in which data collected by high-cadence microlensing surveys were reinvestigated with the aim of uncovering the nature of anomalous lensing events with no proposed 2L 1S or 1L 2S models. Methods. From the project we found that the anomaly appearing in the lensing event OGLE-2023-BLG-0836 cannot be explained by the usual interpretations, and we conducted a comprehensive analysis of the event. From thorough modeling of the light curve under sophisticated lens-system configurations, we arrived at the conclusion that a triple-mass lens system is imperative to account for the anomalous features observed in the lensing light curve. Results. From the Bayesian analysis using the measured observables of the event timescale and angular Einstein radius, we determined that the least massive component of the lens has a planetary mass of 4.36−2.18+2.35MJ. This planet orbits within a stellar binary system composed of two stars with masses 0.71−0.36+0.38Mand 0.56−0.28+0.30M. This lensing event signifies the sixth occurrence of a planetary microlensing system in which a planet belongs to a stellar binary system. 
    more » « less
  5. Abstract The gravitational microlensing technique is most sensitive to planets in a Jupiter-like orbit and has detected more than 200 planets. However, only a few wide-orbit (s> 2) microlensing planets have been discovered, wheresis the planet-to-host separation normalized to the angular Einstein ring radius,θE. Here, we present the discovery and analysis of a strong candidate wide-orbit microlensing planet in the event OGLE-2017-BLG-0448. The whole light curve exhibits long-term residuals to the static binary-lens single-source model, so we investigate the residuals by adding the microlensing parallax, microlensing xallarap, an additional lens, or an additional source. For the first time, we observe a complex degeneracy between all four effects. The wide-orbit models withs∼ 2.5 and a planet-to-host mass ratio ofq∼ 10−4are significantly preferred, but we cannot rule out the close models withs∼ 0.35 andq∼ 10−3. A Bayesian analysis based on a Galactic model indicates that, despite the complicated degeneracy, the surviving wide-orbit models all contain a super-Earth-mass to Neptune-mass planet at a projected planet-host separation of ∼6 au and the surviving close-orbit models all consist of a Jovian-mass planet at ∼1 au. The host star is probably an M or K dwarf. We discuss the implications of this dimension-degeneracy disaster on microlensing light-curve analysis and its potential impact on statistical studies. 
    more » « less