skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Why animals construct helical burrows: Construction vs. post‐construction benefits
Abstract The extended phenotype of helical burrowing behavior in animals has evolved independently many times since the Cambrian explosion (~540 million years ago [MYA]). A number of hypotheses have been proposed to explain the evolution of helical burrowing in certain taxa, but no study has searched for a general explanation encompassing all taxa. We reviewed helical burrowing in both extant and extinct animals and from the trace fossil record and compiled 10 hypotheses for why animals construct helical burrows, including our own ideas. Of these, six are post‐construction hypotheses—benefits to the creator or offspring, realized after burrow construction—and four are construction hypotheses reflecting direct benefits to the creator during construction. We examine the fit of these hypotheses to a total of 21 extant taxa and ichnotaxa representing 59–184 possible species. Only two hypotheses, antipredator and biomechanical advantage, cannot be rejected for any species (possible in 100% of taxa), but six of the hypotheses cannot be rejected for most species (possible in 86%–100% of taxa): microclimate buffer, reduced falling sediment (soil), anticrowding, and vertical patch. Four of these six are construction hypotheses, raising the possibility that helical burrowing may have evolved without providing post‐construction benefits. Our analysis shows that increased drainage, deposit feeding, microbial farming, and offspring escape cannot explain helical burrowing behavior in the majority of taxa (5%–48%). Overall, the evidence does not support a general explanation for the evolution of helical burrowing in animals. The function and evolution of the helix as an extended phenotype seems to provide different advantages for different taxa in different environments under different physicochemical controls (some traces/tracemakers are discussed in more detail due to their association with body fossils and well‐constrained physicochemical parameters). Although direct tests of many of the hypotheses would be difficult, we nevertheless offer ways to test some of the hypotheses for selected taxa.  more » « less
Award ID(s):
1930451
PAR ID:
10543504
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
9
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many organisms have evolved adaptations to increase the odds of survival of their offspring. Parental care has evolved several times in animals including ectotherms. In amphibians, ~ 10% of species exhibit parental care. Among these, poison frogs (Dendrobatidae) are well-known for their extensive care, which includes egg guarding, larval transport, and specialized tadpole provisioning with trophic eggs. At least one third of dendrobatids displaying aposematism by exhibiting warning coloration that informs potential predators about the presence of defensive skin toxins. Aposematism has a central role in poison frog diversification, including diet specialization, and visual and acoustic communication; and it is thought to have impacted their reproductive biology as well. We tested the latter association using multivariate phylogenetic methods at the family level. Our results show complex relationships between aposematism and certain aspects of the reproductive biology in dendrobatids. In particular, aposematic species tend to use more specialized tadpole-deposition sites, such as phytotelmata, and ferry fewer tadpoles than non-aposematic species. We propose that aposematism may have facilitated the diversification of microhabitat use in dendrobatids in the context of reproduction. Furthermore, the use of resource-limited tadpole-deposition environments may have evolved in tandem with an optimal reproductive strategy characterized by few offspring, biparental care, and female provisioning of food in the form of unfertilized eggs. We also found that in phytotelm-breeders, the rate of transition from cryptic to aposematic phenotype is 17 to 19 times higher than vice versa. Therefore, we infer that the aposematism in dendrobatids might serve as an umbrella trait for the evolution and maintenance of their complex offspring-caring activities. 
    more » « less
  2. Mammals originated during the Mesozoic and survived the Cretaceous-Palaeogene (K-Pg) mass extinction. Their evolution from small, opportunistic animals to more specialised animals with diverse locomotor behaviours following the extinction is still unclear. An ideal group to address this question is the Taeniodonta which are among the few eutherians that purportedly crossed the K-Pg boundary and diversified in the early Palaeogene. They are known thus far from the Palaeogene of North America and are characterised by their unique dentition adapted for an abrasive diet and their robust skeleton. There are 10 genera of taeniodonts classified into two families. The Conoryctidae are smaller with more generalised body plan, whereas the Stylinodontidae reached large body size (up to 100kg) and evolved crown hypsodonty. We focused our study on the postcranial functional morphology of the two taeniodont subgroups. We conducted linear discriminant analysis using 9 linear measurements of the humerus, comparing Onychodectes (a conoryctid) and Stylinodon, Ectoganus, Psittacotherium (stylinodonts) with extant mammals of known locomotion. We also used 29 linear tarsal measurements to evaluate the locomotor behaviour of Onychodectes and Conoryctes (conoryctids) and Ectoganus alongside a sample of extant mammals and other Palaeogene taxa. Our results show that Onychodectes, which is one of the most basal taeniodonts, might have been terrestrial/semi-fossorial, similar to the numbat. Postcranial features of Onychodectes show it possessed digging adaptations i.e. a long olecranon process of the ulna, enlarged manual unguals and a well-developed deltopectoral crest and broad distal end of the humerus. We find stylinodontid taeniodonts to be distinctly more fossorial, comparable to the striped skunk, gopher and the aardvark. Our study suggests that digging is an ancestral behaviour for taeniodonts implying the importance of burrowing for surviving the K-Pg extinction. 
    more » « less
  3. Schaack, Sarah (Ed.)
    Abstract Apoptosis is a fundamental feature of multicellular animals and is best understood in mammals, flies, and nematodes, with the invertebrate models being thought to represent a condition of ancestral simplicity. However, the existence of a leukemia-like cancer in the softshell clam Mya arenaria provides an opportunity to re-evaluate the evolution of the genetic machinery of apoptosis. Here, we report the whole-genome sequence for M. arenaria which we leverage with existing data to test evolutionary hypotheses on the origins of apoptosis in animals. We show that the ancestral bilaterian p53 locus, a master regulator of apoptosis, possessed a complex domain structure, in contrast to that of extant ecdysozoan p53s. Further, ecdysozoan taxa, but not chordates or lophotrochozoans like M. arenaria, show a widespread reduction in apoptosis gene copy number. Finally, phylogenetic exploration of apoptosis gene copy number reveals a striking linkage with p53 domain complexity across species. Our results challenge the current understanding of the evolution of apoptosis and highlight the ancestral complexity of the bilaterian apoptotic tool kit and its subsequent dismantlement during the ecdysozoan radiation. 
    more » « less
  4. Abstract Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus‐level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web‐building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders. 
    more » « less
  5. Snakes represent one-eighth of terrestrial vertebrate diversity, encompassing various lifestyles, ecologies, and morphologies. However, the ecological origins and early evolution of snakes are controversial topics in biology. To address the paucity of well-preserved fossils and the caveats of osteological traits for reconstructing snake evolution, we applied a different ecomorphological hypothesis based on high-definition brain reconstructions of extant Squamata. Our predictive models revealed a burrowing lifestyle with opportunistic behavior at the origin of crown snakes, reflecting a complex ancestral mosaic brain pattern. These findings emphasize the importance of quantitatively tracking the phenotypic diversification of soft tissues—including the accurate definition of intact brain morphological traits such as the cerebellum—in understanding snake evolution and vertebrate paleobiology. Furthermore, our study highlights the power of combining extant and extinct species, soft tissue reconstructions, and osteological traits in tracing the deep evolution of not only snakes but also other groups where fossil data are scarce. 
    more » « less