Abstract Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser–Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus. The neutron-capture cross section for$$^{73}\hbox {Zn}$$ (n,$$\gamma $$ )$$^{74}\hbox {Zn}$$ was calculated using three Hauser-Feshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and$$\gamma $$ -ray strength function ($$\gamma \hbox {SF}$$ ) were included. Finally, the nuclear structure information was made consistent across the codes. The neutron-capture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and$$\gamma \hbox {SF}$$ , accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutron-capture cross section from different Hauser-Feshbach codes. However, ensuring the treatment of the input of experimental data and other nuclear physics are similar across multiple codes requires a careful investigation. For this reason, more complete documentation of the inputs and physics chosen is important. 
                        more » 
                        « less   
                    
                            
                            The s process in massive stars, a benchmark for neutron capture reaction rates
                        
                    
    
            Abstract A clear definition of the contribution from the slow neutron-capture process (s process) to the solar abundances between Fe and the Sr-Zr region is a crucial challenge for nuclear astrophysics. Robust s-process predictions are necessary to disentangle the contribution from other stellar processes producing elements in the same mass region. Nuclear uncertainties are affecting s-process calculations, but most of the needed nuclear input are accessible to present nuclear experiments or they will be in the near future. Neutron-capture rates have a great impact on the s process in massive stars, which is a fundamental source for the solar abundances of the lighter s-process elements heavier than Fe (weak s-process component). In this work we present a new nuclear sensitivity study to explore the impact on the s process in massive stars of 86 neutron-capture rates, including all the reactions between C and Si and between Fe and Zr. We derive the impact of the rates at the end of the He-burning core and at the end of the C-burning shell, where the$$^{22}$$ Ne($$\alpha $$ ,n)$$^{25}$$ Mg reaction is is the main neutron source. We confirm the relevance of the light isotopes capturing neutrons in competition with the Fe seeds as a crucial feature of the s process in massive stars. For heavy isotopes we study the propagation of the neutron-capture uncertainties, finding a clear difference of the impact of Fe and Co isotope rates with respect to the rates of heavier stable isotopes. The local uncertainty propagation due to the neutron-capture rates at the s-process branching points is also considered, discussing the example of$$^{85}$$ Kr. The complete results of our study for all the 86 neutron-capture rates are available online. Finally, we present the impact on the weak s process of the neutron-capture rates included in the new ASTRAL library (v0.2). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1927130
- PAR ID:
- 10543549
- Publisher / Repository:
- EPJA
- Date Published:
- Journal Name:
- The European Physical Journal A
- Volume:
- 59
- Issue:
- 12
- ISSN:
- 1434-601X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The evolutionary path of massive stars begins at helium burning. Energy production for this phase of stellar evolution is dominated by the reaction path 3$$\alpha \rightarrow ^{12}$$ C$$(\alpha ,\gamma )^{16}$$ O and also determines the ratio of$$^{12}$$ C/$$^{16}$$ O in the stellar core. This ratio then sets the evolutionary trajectory as the star evolves towards a white dwarf, neutron star or black hole. Although the reaction rate of the 3$$\alpha $$ process is relatively well known, since it proceeds mainly through a single narrow resonance in$$^{12}$$ C, that of the$$^{12}$$ C$$(\alpha ,\gamma )^{16}$$ O reaction remains uncertain since it is the result of a more difficult to pin down, slowly-varying, portion of the cross section over a strong interference region between the high-energy tails of subthreshold resonances, the low-energy tails of higher-energy broad resonances and direct capture. Experimental measurements of this cross section require herculean efforts, since even at higher energies the cross section remains small and large background sources are often present that require the use of very sensitive experimental methods. Since the$$^{12}$$ C$$(\alpha ,\gamma )^{16}$$ O reaction has such a strong influence on many different stellar objects, it is also interesting to try to back calculate the required rate needed to match astrophysical observations. This has become increasingly tempting, as the accuracy and precision of observational data has been steadily improving. Yet, the pitfall to this approach lies in the intermediary steps of modeling, where other uncertainties needed to model a star’s internal behavior remain highly uncertain.more » « less
- 
            Abstract One of the most important stellar neutron sources is the22Ne($$\alpha ,n$$ )25Mg reaction, which gets activated both during the helium intershell burning in asymptotic giant branch stars and in core helium and shell carbon burning in massive stars. The22Ne($$\alpha ,n$$ )25Mg reaction serves as the main neutron producer for the weaks-process and provides a short but strong neutron exposure during the helium flash phase of the mains-process, significantly affecting the abundances at thes-process branch points. The cross section needs to be known at very low energies, as close as possible to the neutron threshold at$$E_\alpha =$$ 562 keV (Q= −478 keV), but both direct and indirect measurements have turned out to be very challenging, leading to significant uncertainties. Here we discuss the current status of the reaction, including recent and upcoming measurements, and provide a discussion on the astrophysical implications as well as an outlook into the near future.more » « less
- 
            Abstract Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) can tag neutrons via their capture on gadolinium or hydrogen, which release$$\gamma $$ -rays that are subsequently detected as Cherenkov light. In this work, we present the first results of the XENONnT NV when operated with demineralized water only, before the insertion of gadolinium. Its efficiency for detecting neutrons is$$({82\pm 1}){\%}$$ , the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of$$({53\pm 3}){\%}$$ for the tagging of WIMP-like neutron signals, inside a tagging time window of$${250}~{\upmu }\hbox {s}$$ between TPC and NV, leading to a livetime loss of$${1.6}{\%}$$ during the first science run of XENONnT.more » « less
- 
            Abstract We report on a measurement of elastic electron scattering on argon performed with a novel cryogenic gas-jet target at the Mainz Microtron accelerator MAMI. The luminosity is estimated with the thermodynamical parameters of the target and by comparison to a calculation in distorted-wave Born approximation. The cross section, measured at new momentum transfers of 1.24 $$\hbox {fm}^{-1}$$ and 1.55 $$\hbox {fm}^{-1}$$ is in agreement with previous experiments performed with a traditional high-pressure gas target, as well as with modernab-initiocalculations employing state-of-the-art nuclear forces from chiral effective field theory. The nearly background-free measurement highlights the optimal properties of the gas-jet target for elements heavier than hydrogen, enabling new applications in hadron and nuclear physics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    