skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measurement of the 40Ar(e,$$\hbox {e}^{\prime }$$) elastic scattering cross section with a novel gas-jet target
Abstract We report on a measurement of elastic electron scattering on argon performed with a novel cryogenic gas-jet target at the Mainz Microtron accelerator MAMI. The luminosity is estimated with the thermodynamical parameters of the target and by comparison to a calculation in distorted-wave Born approximation. The cross section, measured at new momentum transfers of 1.24 $$\hbox {fm}^{-1}$$ fm - 1 and 1.55 $$\hbox {fm}^{-1}$$ fm - 1 is in agreement with previous experiments performed with a traditional high-pressure gas target, as well as with modernab-initiocalculations employing state-of-the-art nuclear forces from chiral effective field theory. The nearly background-free measurement highlights the optimal properties of the gas-jet target for elements heavier than hydrogen, enabling new applications in hadron and nuclear physics.  more » « less
Award ID(s):
2012114 2412703
PAR ID:
10612337
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal A
Volume:
61
Issue:
7
ISSN:
1434-601X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton–proton collisions at a center-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$ Te V . The analysis uses a data sample corresponding to a total integrated luminosity of 138$$\,\text {fb}^{-1}$$ fb - 1 collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The$$\hbox {W}+\hbox {c}$$ W + c production cross section and the cross section ratio$$R_\textrm{c}^{\pm }= \sigma ({\hbox {W}}^{+}+\bar{\text {c}})/\sigma (\hbox {W}^{-}+{\textrm{c}})$$ R c ± = σ ( W + + c ¯ ) / σ ( W - + c ) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in$$R_\textrm{c}^{\pm }= 0.950 \pm 0.005\,\text {(stat)} \pm 0.010 \,\text {(syst)} $$ R c ± = 0.950 ± 0.005 (stat) ± 0.010 (syst) . The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics. 
    more » « less
  2. Abstract This paper presents the first measurement of$$\psi {(2S)}$$ ψ ( 2 S ) and$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the$${{J \hspace{-1.66656pt}/\hspace{-1.111pt}\psi }} $$ J / ψ ($$\rightarrow $$ $$\mu ^+\mu ^-$$ μ + μ - )$$\pi ^+\pi ^-$$ π + π - final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of$$13\text {TeV} $$ 13 TeV in 2016, corresponding to an integrated luminosity of$$1.64\,\text {\,fb} ^{-1} $$ 1.64 \,fb - 1 . The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($$p_{\textrm{T}} (\text {tag})/p_{\textrm{T}} (\text {jet})$$ p T ( tag ) / p T ( jet ) ), is measured differentially in$$p_{\textrm{T}} (\text {jet})$$ p T ( jet ) and$$p_{\textrm{T}} (\text {tag})$$ p T ( tag ) bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displacedb-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower. 
    more » « less
  3. Abstract This work presents MARS (Modular apparatus for nuclear reactions spectroscopy) and its characterization prior to its first application to measure$$^6$$ 6 Li+$$^{12}$$ 12 C nuclear reactions. Measurements were performed at the 3 MV tandem accelerator of the CNA (National Accelerator Center), in Seville, Spain. The$$^{6}$$ 6 Li projectiles were accelerated at energies around the$$^6$$ 6 Li+$$^{12}$$ 12 C Coulomb barrier ($$V^{\text {cm}}_{B}\sim 3.0$$ V B cm 3.0 MeV - center of mass and$$V^{\text {lab}}_{B}\sim 4.5$$ V B lab 4.5 MeV - laboratory frame). Using a$$^{6}\hbox {Li}^{2+}$$ 6 Li 2 + beam, we measured at 13 laboratory energies from 4.00 to 7.75 MeV. Thus, we present the excitation function of$$^{12}$$ 12 C($$^6$$ 6 Li,$$^4$$ 4 He)$$^{14}\hbox {N}^{g.s.}$$ 14 N g . s . reaction, at 2 backward angles ($$110.0^\circ $$ 110 . 0 and$$140.0^\circ $$ 140 . 0 ). The projectile dissociation, leading to this reaction, increases with the bombarding energies around the Coulomb barrier. This dissociation is favored at an optimum energy$$E_{b}^{\text {op}}$$ E b op $$\ge $$ $$V_{B}$$ V B +$$|Q_{bu}|$$ | Q bu | , where$$V_{B}$$ V B is the Coulomb barrier of the system, and$$|Q_{bu}|$$ | Q bu | is the module ofQ-value for the$$^6$$ 6 Li dissociation into$$^4$$ 4 He+$$^2$$ 2 H. This result corroborates a systematic analysis of weakly bound projectiles reacting on several targets [1]. 
    more » « less
  4. Abstract Cuprous oxide ($$\hbox {Cu}{}_2\hbox {O}$$ Cu 2 O ) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to$$n^2$$ n 2 ) enables strong long-range dipole-dipole (proportional to$$n^4$$ n 4 ) and van der Waals interactions (proportional to$$n^{11}$$ n 11 ). Currently, the highest-lying Rydberg states are found in naturally occurring$$\hbox {Cu}_2\hbox {O}$$ Cu 2 O . However, for technological applications, the ability to grow high-quality synthetic samples is essential. The fabrication of thin-film$$\hbox {Cu}{}_2\hbox {O}$$ Cu 2 O samples is of particular interest as they hold potential for observing extreme single-photon nonlinearities through the Rydberg blockade. Nevertheless, due to the susceptibility of high-lying states to charged impurities, growing synthetic samples of sufficient quality poses a substantial challenge. This study successfully demonstrates the CMOS-compatible synthesis of a$$\hbox {Cu}{}_2\hbox {O}$$ Cu 2 O thin film on a transparent substrate that showcases Rydberg excitons up to$$n = 8$$ n = 8 which is readily suitable for photonic device fabrications. These findings mark a significant advancement towards the realization of scalable and on-chip integrable Rydberg quantum technologies. 
    more » « less
  5. Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ C 2 ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ C ħ × -action. First, we find a two-parameter family$$X_{k,l}$$ X k , l of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] is obtained via direct limit$$l\longrightarrow \infty $$ l and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ ħ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ P 2 with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual. 
    more » « less