skip to main content


Title: Controlled Cell Alignment Using Two‐Photon Direct Laser Writing‐Patterned Hydrogels in 2D and 3D
Abstract

Direct laser writing (DLW) via two‐photon polymerization is an emerging highly precise technique for the fabrication of intricate cellular scaffolds. Despite recent progress in using two‐photon‐polymerized scaffolds to probe fundamental cell behaviors, new methods to direct and modulate microscale cell alignment and selective cell adhesion using two‐photon‐polymerized microstructures are of keen interest. Here, a DLW‐fabricated 2D and 3D hydrogel microstructures, with alternating soft and stiff regions, for precisely controlled cell alignment are reported. The use of both cell‐adhesive and cell‐repellent hydrogels allows selective adhesion and alignment of human mesenchymal stem cells within the printed structure. Importantly, DLW patterning enables cell alignment on flat surfaces as well as irregular and curved 3D microstructures, which are otherwise challenging to pattern with cells.

 
more » « less
Award ID(s):
1647837
NSF-PAR ID:
10452323
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Bioscience
Volume:
21
Issue:
5
ISSN:
1616-5187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The extracellular matrix (ECM) is a complex 3D framework of macromolecules, which regulate cell bioactivity via chemical and physical properties. The ECM's physical properties, including stiffness and physical constraints to cell shape, regulate actomyosin cytoskeleton contractions, which induce signaling cascades influencing gene expression and cell fate. Engineering such bioactivity, a.k.a., mechanotransduction, has been mainly achieved by 2D platforms such as micropatterns. These platforms cause cytoskeletal contractions with apico‐basal polarity and can induce mechanotransduction that is unnatural to most cells in native ECMs. An effective method to engineer mechanotransduction in 3D is needed. This work creates FiberGel, a 3D artificial ECM comprised of sub‐cellular scale fibers. These microfibers can crosslink into defined microstructures with the fibers' diameter, stiffness, and alignment independently tuned. Most importantly, cells are blended amongst the fibers prior to crosslinking, leading to homogeneously cellularized scaffolds. Studies using mesenchymal stem cells showed that the microfibers' diameter, stiffness, and alignment regulate 3D cell shape and the nuclei translocation of transcriptional coactivators YAP/TAZ (yes‐associated protein/transcriptional coactivator), which enables the control of cell differentiation and tissue formation. A novel technology based on repeated stretching and folding is created to synthesize FiberGel. This 3D platform can significantly contribute to mechanotransduction research and applications.

     
    more » « less
  2. Abstract

    We demonstrate the use of tip-enhanced Raman spectroscopy (TERS) on polymeric microstructures fabricated by two-photon polymerization direct laser writing (TPP-DLW). Compared to the signal intensity obtained in confocal Raman microscopy, a linear enhancement of almost two times is measured when using TERS. Because the probing volume is much smaller in TERS than in confocal Raman microscopy, the effective signal enhancement is estimated to be ca. 104. We obtain chemical maps of TPP microstructures using TERS with relatively short acquisition times and with high spatial resolution as defined by the metallic tip apex radius of curvature. We take advantage of this high resolution to study the homogeneity of the polymer network in TPP microstructures printed in an acrylic-based resin. We find that the polymer degree of conversion varies by about 30% within a distance of only 100 nm. The combination of high resolution topographical and chemical data delivered by TERS provides an effective analytical tool for studying TPP-DLW materials in a non-destructive way.

     
    more » « less
  3. null (Ed.)
    The ability to manufacture biodegradable structures at small scales is integral to a variety of applications in biological, medical, and pharmaceutical fields. Recent developments in additive manufacturing (or "three-dimensional (3D) printing") allow for biodegradable materials to be printed with high resolution; however, there is typically a limit with respect to a resolvable feature size (e.g., layer height) that dictates the minimum increments for tuning distinct degradation-mediated functionalities via print geometry. Here we investigate the potential to 3D print designs that afford additional degrees of control during intermediate stages between the complete biodegradation of microstructures that differ by a single layer height. Preliminary fabrication results revealed effective printing of tubular 3D biodegradable gelatin methacryloyl (GelMA) structures with outer diameters of 100 μm and wall thicknesses of 35 μm using two-photon direct laser writing (DLW)-based additive manufacturing. Simulation results for varying designs suggest that both the total degradation time as well as the diffusion dynamics through a microstructure during the final stage of biodegradation can be modulated via geometric means. Thus, the concepts presented in this work could open new avenues in areas including drug delivery and biomaterials. 
    more » « less
  4. Abstract

    Clinical and animal studies have reported the influence of sex on the incidence and progression of tendinopathy, which results in disparate structural and biomechanical outcomes. However, there remains a paucity in our understanding of the sex‐specific biological mechanisms underlying effective tendon healing. To overcome this hurdle, our group has investigated the impact of sex on tendon regeneration using the super‐healer Murphy Roths Large (MRL/MpJ) mouse strain. We have previously shown that the scarless healing capacity of MRL/MpJ patellar tendons is associated with sexually dimorphic regulation of gene expression for pathways involved in fibrosis, cell migration, adhesion, and extracellular matrix (ECM) remodeling following an acute mid‐substance injury. Thus, we hypothesized that MRL/MpJ scarless tendon healing is mediated by sex‐specific and temporally distinct orchestration of cell–ECM interactions. Accordingly, the present study comparatively evaluated MRL/MpJ tendon cells on two‐dimensional (2D; glass) and scaffold platforms to examine cell behavior under biochemical and topographical cues associated with tendon homeostasis and healing. Female MRL/MpJ cells showed reduced 2D migration and spreading area accompanied by enhanced mechanosensing, ECM alignment, and fibronectin‐mediated cell proliferation compared to male MRL/MpJ cells. Interestingly, female MRL/MpJ cells cultured on isotropic scaffolds showed diminished cell–ECM organization compared to male MRL/MpJ cells. Lastly, MRL/MpJ cells elicited enhanced cytoskeletal elongation and alignment, ECM deposition and organization, and connexin 43‐mediated intercellular communication compared to male B6 cells, regardless of culture condition or sex. These results provide insight into the cellular features conserved within the MRL/MpJ phenotype and potential sex‐specific targets for the development of more equitable therapeutics.

     
    more » « less
  5. Abstract

    Direct laser writing (DLW) is an advanced fabrication technique that allows users to create complex 3D microstructures from polymer precursors. These microstructures can be integrated with micro‐electromechanical systems (MEMS) actuators. MEMS actuators provide a convenient platform for interacting with the intricate microstructures, either to characterize their mechanical properties or cause them to deform. Structures are fabricated directly onto electrostatic comb drives and chevron thermal actuators that are produced using a commercial foundry process. By applying a voltage to the MEMS actuators, highly controlled deformation of these microstructures is observed. Mechanical behaviors of microstructures produced with different materials and fabrication conditions are compared. MEMS–DLW integration is a convenient approach to characterizing the mechanics of DLW microstructures and may well lead to a new class of dynamic 3D devices for applications ranging from tissue engineering to imaging.

     
    more » « less