With the increasing popularity of Graph Neural Networks (GNNs) for predictive tasks on graph structured data, research on their explainability is becoming more critical and achieving significant progress. Although many methods are proposed to explain the predictions of GNNs, their focus is mainly on “how to generate explanations.” However, other important research questions like “whether the GNN explanations are inaccurate,” “what if the explanations are inaccurate,” and “how to adjust the model to generate more accurate explanations” have gained little attention. Our previous GNN Explanation Supervision (GNES) framework demonstrated effectiveness on improving the reasonability of the local explanation while still keep or even improve the backbone GNNs model performance. In many applications instead of per sample explanations, we need to find global explanations which are reasonable and faithful to the domain data. Simply learning to explain GNNs locally is not an optimal solution to a global understanding of the model. To improve the explainability power of the GNES framework, we propose the Global GNN Explanation Supervision (GGNES) technique which uses a basic trained GNN and a global extension of the loss function used in the GNES framework. This GNN creates local explanations which are fed to a Global Logic-based GNN Explainer, an existing technique that can learn the global Explanation in terms of a logic formula. These two frameworks are then trained iteratively to generate reasonable global explanations. Extensive experiments demonstrate the effectiveness of the proposed model on improving the global explanations while keeping the performance similar or even increase the model prediction power.
more »
« less
Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
Graph Neural Networks (GNNs) are neural models that leverage the dependency structure in graphical data via message passing among the graph nodes. GNNs have emerged as pivotal architectures in analyzing graph-structured data, and their expansive application in sensitive domains requires a comprehensive understanding of their decision-making processes — necessitating a framework for GNN explainability. An explanation function for GNNs takes a pre-trained GNN along with a graph as input, to produce a ‘sufficient statistic’ subgraph with respect to the graph label. A main challenge in studying GNN explainability is to provide fidelity measures that evaluate the performance of these explanation functions. This paper studies this foundational challenge, spotlighting the inherent limitations of prevailing fidelity metrics, including Fid+, Fid−, and Fid∆. Specifically, a formal, information-theoretic definition of explainability is introduced and it is shown that existing metrics often fail to align with this definition across various statistical scenarios. The reason is due to potential distribution shifts when subgraphs are removed in computing these fidelity measures. Subsequently, a robust class of fidelity measures are introduced, and it is shown analytically that they are resilient to distribution shift issues and are applicable in a wide range of scenarios. Extensive empirical analysis on both synthetic and real datasets are provided to illustrate that the proposed metrics are more coherent with gold standard metrics. The source code is available at https://trustai4s-lab.github.io/fidelity.
more »
« less
- Award ID(s):
- 2331908
- PAR ID:
- 10543647
- Publisher / Repository:
- ICLR
- Date Published:
- Format(s):
- Medium: X
- Location:
- https://arxiv.org/abs/2310.01820
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Graph Neural Networks (GNNs) resurge as a trending research subject owing to their impressive ability to capture representations from graph-structured data. However, the black-box nature of GNNs presents a significant challenge in terms of comprehending and trusting these models, thereby limiting their practical applications in mission-critical scenarios. Although there has been substantial progress in the field of explaining GNNs in recent years, the majority of these studies are centered on static graphs, leaving the explanation of dynamic GNNs less explored. Dynamic GNNs, with their ever-evolving graph structures, pose a unique challenge and require additional efforts to effectively capture temporal dependencies and structural relationships. To address this challenge, we present DyExplainer, a novel approach to explaining dynamic GNNs on the fly. DyExplainer trains a dynamic GNN backbone to extract representations of the graph at each snapshot, while simultaneously exploring structural relationships and temporal dependencies through a sparse attention technique. To preserve the desired properties of the explanation, such as structural consistency and temporal continuity, we augment our approach with contrastive learning techniques to providea priori-guided regularization. To model longer-term temporal dependencies, we develop a buffer-based live-updating scheme for training. The results of our extensive experiments on various datasets demonstrate the superiority of DyExplainer, not only providing faithful explainability of the model predictions but also significantly improving the model prediction accuracy, as evidenced in the link prediction task.more » « less
-
Explaining machine learning models is an important and increasingly popular area of research interest. The Shapley value from game theory has been proposed as a prime approach to compute feature importance towards model predictions on images, text, tabular data, and recently graph neural networks (GNNs) on graphs. In this work, we revisit the appropriateness of the Shapley value for GNN explanation, where the task is to identify the most important subgraph and constituent nodes for GNN predictions. We claim that the Shapley value is a non-ideal choice for graph data because it is by definition not structure-aware. We propose a Graph Structure-aware eXplanation (GStarX) method to leverage the critical graph structure information to improve the explanation. Specifically, we define a scoring function based on a new structure-aware value from the cooperative game theory proposed by Hamiache and Navarro (HN). When used to score node importance, the HN value utilizes graph structures to attribute cooperation surplus between neighbor nodes, resembling message passing in GNNs, so that node importance scores reflect not only the node feature importance, but also the node structural roles. We demonstrate that GStarX produces qualitatively more intuitive explanations, and quantitatively improves explanation fidelity over strong baselines on chemical graph property prediction and text graph sentiment classification.more » « less
-
Graph Neural Networks (GNNs) have shown satisfying performance in various graph analytical problems. Hence, they have become the de facto solution in a variety of decision-making scenarios. However, GNNs could yield biased results against certain demographic subgroups. Some recent works have empirically shown that the biased structure of the input network is a significant source of bias for GNNs. Nevertheless, no studies have systematically scrutinized which part of the input network structure leads to biased predictions for any given node. The low transparency on how the structure of the input network influences the bias in GNN outcome largely limits the safe adoption of GNNs in various decision-critical scenarios. In this paper, we study a novel research problem of structural explanation of bias in GNNs. Specifically, we propose a novel post-hoc explanation framework to identify two edge sets that can maximally account for the exhibited bias and maximally contribute to the fairness level of the GNN prediction for any given node, respectively. Such explanations not only provide a comprehensive understanding of bias/fairness of GNN predictions but also have practical significance in building an effective yet fair GNN model. Extensive experiments on real-world datasets validate the effectiveness of the proposed framework towards delivering effective structural explanations for the bias of GNNs. Open-source code can be found at https://github.com/yushundong/REFEREE.more » « less
-
Graph Neural Networks (GNNs) have shown superior performance in analyzing attributed networks in various web-based applications such as social recommendation and web search. Nevertheless, in high-stake decision-making scenarios such as online fraud detection, there is an increasing societal concern that GNNs could make discriminatory decisions towards certain demographic groups. Despite recent explorations on fair GNNs, these works are tailored for a specific GNN model. However, myriads of GNN variants have been proposed for different applications, and it is costly to fine-tune existing debiasing algorithms for each specific GNN architecture. Different from existing works that debias GNN models, we aim to debias the input attributed network to achieve fairer GNNs through feeding GNNs with less biased data. Specifically, we propose novel definitions and metrics to measure the bias in an attributed network, which leads to the optimization objective to mitigate bias. We then develop a framework EDITS to mitigate the bias in attributed networks while maintaining the performance of GNNs in downstream tasks. EDITS works in a model-agnostic manner, i.e., it is independent of any specific GNN. Experiments demonstrate the validity of the proposed bias metrics and the superiority of EDITS on both bias mitigation and utility maintenance. Open-source implementation: https://github.com/yushundong/EDITS.more » « less
An official website of the United States government

