skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine learning for automated classification of lung collagen in a urethane-induced lung injury mouse model
Dysregulation of lung tissue collagen level plays a vital role in understanding how lung diseases progress. However, traditional scoring methods rely on manual histopathological examination introducing subjectivity and inconsistency into the assessment process. These methods are further hampered by inter-observer variability, lack of quantification, and their time-consuming nature. To mitigate these drawbacks, we propose a machine learning-driven framework for automated scoring of lung collagen content. Our study begins with the collection of a lung slide image dataset from adult female mice using second harmonic generation (SHG) microscopy. In our proposed approach, first, we manually extracted features based on the 46 statistical parameters of fibrillar collagen. Subsequently, we pre-processed the images and utilized a pre-trained VGG16 model to uncover hidden features from pre-processed images. We then combined both image and statistical features to train various machine learning and deep neural network models for classification tasks. We employed advanced unsupervised techniques like K-means, principal component analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE), and uniform manifold approximation and projection (UMAP) to conduct thorough image analysis for lung collagen content. Also, the evaluation of the trained models using the collagen data includes both binary and multi-label classification to predict lung cancer in a urethane-induced mouse model. Experimental validation of our proposed approach demonstrates promising results. We obtained an average accuracy of 83% and an area under the receiver operating characteristic curve (ROC AUC) values of 0.96 through the use of a support vector machine (SVM) model for binary categorization tasks. For multi-label classification tasks, to quantify the structural alteration of collagen, we attained an average accuracy of 73% and ROC AUC values of 1.0, 0.38, 0.95, and 0.86 for control, baseline, treatment_1, and treatment_2 groups, respectively. Our findings provide significant potential for enhancing diagnostic accuracy, understanding disease mechanisms, and improving clinical practice using machine learning and deep learning models.  more » « less
Award ID(s):
2045640
PAR ID:
10543677
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Biomedical Optics Express
Volume:
15
Issue:
10
ISSN:
2156-7085
Format(s):
Medium: X Size: Article No. 5980
Size(s):
Article No. 5980
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce an active, semisupervised algorithm that utilizes Bayesian experimental design to address the shortage of annotated images required to train and validate Artificial Intelligence (AI) models for lung cancer screening with computed tomography (CT) scans. Our approach incorporates active learning with semisupervised expectation maximization to emulate the human in the loop for additional ground truth labels to train, evaluate, and update the neural network models. Bayesian experimental design is used to intelligently identify which unlabeled samples need ground truth labels to enhance the model’s performance. We evaluate the proposed Active Semi-supervised Expectation Maximization for Computer aided diagnosis (CAD) tasks (ASEM-CAD) using three public CT scans datasets: the National Lung Screening Trial (NLST), the Lung Image Database Consortium (LIDC), and Kaggle Data Science Bowl 2017 for lung cancer classification using CT scans. ASEM-CAD can accurately classify suspicious lung nodules and lung cancer cases with an area under the curve (AUC) of 0.94 (Kaggle), 0.95 (NLST), and 0.88 (LIDC) with significantly fewer labeled images compared to a fully supervised model. This study addresses one of the significant challenges in early lung cancer screenings using low-dose computed tomography (LDCT) scans and is a valuable contribution towards the development and validation of deep learning algorithms for lung cancer screening and other diagnostic radiology examinations. 
    more » « less
  2. Abstract The most common eye infection in people with diabetes is diabetic retinopathy (DR). It might cause blurred vision or even total blindness. Therefore, it is essential to promote early detection to prevent or alleviate the impact of DR. However, due to the possibility that symptoms may not be noticeable in the early stages of DR, it is difficult for doctors to identify them. Therefore, numerous predictive models based on machine learning (ML) and deep learning (DL) have been developed to determine all stages of DR. However, existing DR classification models cannot classify every DR stage or use a computationally heavy approach. Common metrics such as accuracy, F1 score, precision, recall, and AUC-ROC score are not reliable for assessing DR grading. This is because they do not account for two key factors: the severity of the discrepancy between the assigned and predicted grades and the ordered nature of the DR grading scale.  This research proposes computationally efficient ensemble methods for the classification of DR. These methods leverage pre-trained model weights, reducing training time and resource requirements. In addition, data augmentation techniques are used to address data limitations, improve features, and improve generalization. This combination offers a promising approach for accurate and robust DR grading. In particular, we take advantage of transfer learning using models trained on DR data and employ CLAHE for image enhancement and Gaussian blur for noise reduction. We propose a three-layer classifier that incorporates dropout and ReLU activation. This design aims to minimize overfitting while effectively extracting features and assigning DR grades. We prioritize the Quadratic Weighted Kappa (QWK) metric due to its sensitivity to label discrepancies, which is crucial for an accurate diagnosis of DR. This combined approach achieves state-of-the-art QWK scores (0.901, 0.967 and 0.944) in the Eyepacs, Aptos, and Messidor datasets. 
    more » « less
  3. Background: At the time of cancer diagnosis, it is crucial to accurately classify malignant gastric tumors and the possibility that patients will survive. Objective: This study aims to investigate the feasibility of identifying and applying a new feature extraction technique to predict the survival of gastric cancer patients. Methods: A retrospective dataset including the computed tomography (CT) images of 135 patients was assembled. Among them, 68 patients survived longer than three years. Several sets of radiomics features were extracted and were incorporated into a machine learning model, and their classification performance was characterized. To improve the classification performance, we further extracted another 27 texture and roughness parameters with 2484 superficial and spatial features to propose a new feature pool. This new feature set was added into the machine learning model and its performance was analyzed. To determine the best model for our experiment, Random Forest (RF) classifier, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes (NB) (four of the most popular machine learning models) were utilized. The models were trained and tested using the five-fold cross-validation method. Results: Using the area under ROC curve (AUC) as an evaluation index, the model that was generated using the new feature pool yields AUC = 0.98 ± 0.01, which was significantly higher than the models created using the traditional radiomics feature set (p < 0.04). RF classifier performed better than the other machine learning models. Conclusions: This study demonstrated that although radiomics features produced good classification performance, creating new feature sets significantly improved the model performance. 
    more » « less
  4. Yanwu, Xu (Ed.)
    Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treatment are crucial for improving patients’ survival outcomes. In this paper, we propose to employ convolutional neural networks to model the non-linear relationship between the risk of lung cancer and the lungs’ morphology revealed in the CT images. We apply a mini-batched loss that extends the Cox proportional hazards model to handle the non-convexity induced by neural networks, which also enables the training of large data sets. Additionally, we propose to combine mini-batched loss and binary cross-entropy to predict both lung cancer occurrence and the risk of mortality. Simulation results demonstrate the effectiveness of both the mini-batched loss with and without the censoring mechanism, as well as its combination with binary cross-entropy. We evaluate our approach on the National Lung Screening Trial data set with several 3D convolutional neural network architectures, achieving high AUC and C-index scores for lung cancer classification and survival prediction. These results, obtained from simulations and real data experiments, highlight the potential of our approach to improving the diagnosis and treatment of lung cancer. 
    more » « less
  5. Lung or heart sound classification is challenging due to the complex nature of audio data, its dynamic properties of time, and frequency domains. It is also very difficult to detect lung or heart conditions with small amounts of data or unbalanced and high noise in data. Furthermore, the quality of data is a considerable pitfall for improving the performance of deep learning. In this paper, we propose a novel feature-based fusion network called FDC-FS for classifying heart and lung sounds. The FDC-FS framework aims to effectively transfer learning from three different deep neural network models built from audio datasets. The innovation of the proposed transfer learning relies on the transformation from audio data to image vectors and from three specific models to one fused model that would be more suitable for deep learning. We used two publicly available datasets for this study, i.e., lung sound data from ICHBI 2017 challenge and heart challenge data. We applied data augmentation techniques, such as noise distortion, pitch shift, and time stretching, dealing with some data issues in these datasets. Importantly, we extracted three unique features from the audio samples, i.e., Spectrogram, MFCC, and Chromagram. Finally, we built a fusion of three optimal convolutional neural network models by feeding the image feature vectors transformed from audio features. We confirmed the superiority of the proposed fusion model compared to the state-of-the-art works. The highest accuracy we achieved with FDC-FS is 99.1% with Spectrogram-based lung sound classification while 97% for Spectrogram and Chromagram based heart sound classification. 
    more » « less