skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Weak lensing combined with the kinetic Sunyaev–Zel’dovich effect: a study of baryonic feedback
ABSTRACT Extracting precise cosmology from weak lensing surveys requires modelling the non-linear matter power spectrum, which is suppressed at small scales due to baryonic feedback processes. However, hydrodynamical galaxy formation simulations make widely varying predictions for the amplitude and extent of this effect. We use measurements of Dark Energy Survey Year 3 weak lensing (WL) and Atacama Cosmology Telescope DR5 kinematic Sunyaev–Zel’dovich (kSZ) to jointly constrain cosmological and astrophysical baryonic feedback parameters using a flexible analytical model, ‘baryonification’. First, using WL only, we compare the $$S_8$$ constraints using baryonification to a simulation-calibrated halo model, a simulation-based emulator model, and the approach of discarding WL measurements on small angular scales. We find that model flexibility can shift the value of $$S_8$$ and degrade the uncertainty. The kSZ provides additional constraints on the astrophysical parameters, with the joint WL + kSZ analysis constraining $$S_8=0.823^{+0.019}_{-0.020}$$. We measure the suppression of the non-linear matter power spectrum using WL + kSZ and constrain a mean feedback scenario that is more extreme than the predictions from most hydrodynamical simulations. We constrain the baryon fractions and the gas mass fractions and find them to be generally lower than inferred from X-ray observations and simulation predictions. We conclude that the WL + kSZ measurements provide a new and complementary benchmark for building a coherent picture of the impact of gas around galaxies across observations.  more » « less
Award ID(s):
2009210
PAR ID:
10543685
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
534
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 655-682
Size(s):
p. 655-682
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3 × 2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modelling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We show that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude (Q1) generally reflects the strength of baryon feedback. With the upper limit of Q1 prior being bound by the Illustris feedback scenarios, we reach $$\sim 20{{\ \rm per\ cent}}$$ improvement in the constraint of $$S_8=\sigma _8(\Omega _{\rm m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}$$ compared to the original DES 3 × 2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded in previous DES analyses that did not model baryonic physics. We obtain $$S_8=0.781^{+0.014}_{-0.015}$$ for the combined DES Y1+Planck EE+BAO analysis with a non-informative Q1 prior. In terms of the baryon constraints, we measure $$Q_1=1.14^{+2.20}_{-2.80}$$ for DES Y1 only and $$Q_1=1.42^{+1.63}_{-1.48}$$ for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than 2σ. 
    more » « less
  2. ABSTRACT Feedback from active galactic nuclei and stellar processes changes the matter distribution on small scales, leading to significant systematic uncertainty in weak lensing constraints on cosmology. We investigate how the observable properties of group-scale haloes can constrain feedback’s impact on the matter distribution using Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS). Extending the results of previous work to smaller halo masses and higher wavenumber, k, we find that the baryon fraction in haloes contains significant information about the impact of feedback on the matter power spectrum. We explore how the thermal Sunyaev Zel’dovich (tSZ) signal from group-scale haloes contains similar information. Using recent Dark Energy Survey weak lensing and Atacama Cosmology Telescope tSZ cross-correlation measurements and models trained on CAMELS, we obtain 10 per cent constraints on feedback effects on the power spectrum at $$k \sim 5\, h\, {\rm Mpc}^{-1}$$. We show that with future surveys, it will be possible to constrain baryonic effects on the power spectrum to $$\mathcal {O}(\lt 1~{{\ \rm per\ cent}})$$ at $$k = 1\, h\, {\rm Mpc}^{-1}$$ and $$\mathcal {O}(3~{{\ \rm per\ cent}})$$ at $$k = 5\, h\, {\rm Mpc}^{-1}$$ using the methods that we introduce here. Finally, we investigate the impact of feedback on the matter bispectrum, finding that tSZ observables are highly informative in this case. 
    more » « less
  3. In the age of large-scale galaxy and lensing surveys, such as DESI, Euclid, Roman, and Rubin, we stand poised to usher in a transformative new phase of data-driven cosmology. To fully harness the capabilities of these surveys, it is critical to constrain the poorly understood influence of baryon feedback physics on the matter power spectrum. We investigate the use of a powerful and novel cosmological probe, fast radio bursts (FRBs), to capture baryonic effects on the matter power spectrum, leveraging simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (or CAMELS) project, including IllustrisTNG, SIMBA, and Astrid. We find that FRB statistics exhibit a strong correlation, independent of the subgrid model and cosmology, with quantities known to encapsulate baryonic impacts on the matter power spectrum, such as baryon spread and the halo baryon fraction. We propose an innovative method utilizing FRB observations to quantify the effects of feedback physics and enhance weak-lensing measurements of S8. We outline the necessary steps to prepare for the imminent detection of large FRB populations in the coming years, focusing on understanding the redshift evolution of FRB observables and mitigating the effects of cosmic variance. 
    more » « less
  4. Abstract Uncertain feedback processes in galaxies affect the distribution of matter, currently limiting the power of weak lensing surveys. If we can identify cosmological statistics that are robust against these uncertainties, or constrain these effects by other means, then we can enhance the power of current and upcoming observations from weak lensing surveys such as DES, Euclid, the Rubin Observatory, and the Roman Space Telescope. In this work, we investigate the potential of the electron density auto-power spectrum as a robust probe of cosmology and baryonic feedback. We use a suite of (magneto-)hydrodynamic simulations from the CAMELS project and perform an idealized analysis to forecast statistical uncertainties on a limited set of cosmological and physically-motivated astrophysical parameters. We find that the electron number density auto-correlation, measurable through either kinematic Sunyaev-Zel'dovich observations or through Fast Radio Burst dispersion measures, provides tight constraints on Ω m and the mean baryon fraction in intermediate-mass halos, f̅ bar . By obtaining an empirical measure for the associated systematic uncertainties, we find these constraints to be largely robust to differences in baryonic feedback models implemented in hydrodynamic simulations. We further discuss the main caveats associated with our analysis, and point out possible directions for future work. 
    more » « less
  5. Abstract In the age of large-scale galaxy and lensing surveys, such as DESI, Euclid, Roman, and Rubin, we stand poised to usher in a transformative new phase of data-driven cosmology. To fully harness the capabilities of these surveys, it is critical to constrain the poorly understood influence of baryon feedback physics on the matter power spectrum. We investigate the use of a powerful and novel cosmological probe, fast radio bursts (FRBs), to capture baryonic effects on the matter power spectrum, leveraging simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (or CAMELS) project, including IllustrisTNG, SIMBA, and Astrid. We find that FRB statistics exhibit a strong correlation, independent of the subgrid model and cosmology, with quantities known to encapsulate baryonic impacts on the matter power spectrum, such as baryon spread and the halo baryon fraction. We propose an innovative method utilizing FRB observations to quantify the effects of feedback physics and enhance weak-lensing measurements ofS8. We outline the necessary steps to prepare for the imminent detection of large FRB populations in the coming years, focusing on understanding the redshift evolution of FRB observables and mitigating the effects of cosmic variance. 
    more » « less