We present direct constraints on galaxy intrinsic alignments (IAs) using the Dark Energy Survey Year 3 (DES Y3), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and its precursor, the Baryon Oscillation Spectroscopic Survey (BOSS). Our measurements incorporate photometric red sequence (redMaGiC) galaxies from DES with median redshift z ∼ 0.2–1.0, luminous red galaxies from eBOSS at z ∼ 0.8, and also an SDSSIII BOSS CMASS sample at z ∼ 0.5. We measure twopoint IA correlations, which we fit using a model that includes lensing, magnification, and photometric redshift error. Fitting on scales 6 Mpc h−1 < rp < 70 Mpc h−1, we make a detection of IAs in each sample, at 5σ–22σ (assuming a simple oneparameter model for IAs). Using these red samples, we measure the IA–luminosity relation. Our results are statistically consistent with previous results, but offer a significant improvement in constraining power, particularly at low luminosity. With this improved precision, we see detectable dependence on colour between broadly defined red samples. It is likely that a more sophisticated approach than a binary red/blue split, which jointly considers colour and luminosity dependence in the IA signal, will be needed in future. We also compare the various signal components at the bestfitting point in parameter space for each sample, and find that magnification and lensing contribute $\sim 2\!\!18~{{\ \rm per\ cent}}$ of the total signal. As precision continues to improve, it will certainly be necessary to account for these effects in future direct IA measurements. Finally, we make equivalent measurements on a sample of emissionline galaxies from eBOSS at z ∼ 0.8. We constrain the nonlinear alignment amplitude to be $A_1=0.07^{+0.32}_{0.42}$ (A1 < 0.78 at 95 per cent CL).
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

ABSTRACT 
ABSTRACT We study the effect of magnification in the Dark Energy Survey Year 3 analysis of galaxy clustering and galaxy–galaxy lensing, using two different lens samples: a sample of luminous red galaxies, redMaGiC, and a sample with a redshiftdependent magnitude limit, MagLim. We account for the effect of magnification on both the flux and size selection of galaxies, accounting for systematic effects using the Balrog image simulations. We estimate the impact of magnification on the galaxy clustering and galaxy–galaxy lensing cosmology analysis, finding it to be a significant systematic for the MagLim sample. We show cosmological constraints from the galaxy clustering autocorrelation and galaxy–galaxy lensing signal with different magnifications priors, finding broad consistency in cosmological parameters in ΛCDM and wCDM. However, when magnification bias amplitude is allowed to be free, we find the twopoint correlation functions prefer a different amplitude to the fiducial input derived from the image simulations. We validate the magnification analysis by comparing the crossclustering between lens bins with the prediction from the baseline analysis, which uses only the autocorrelation of the lens bins, indicating that systematics other than magnification may be the cause of the discrepancy. We show that adding the crossclustering between lens redshift bins to the fit significantly improves the constraints on lens magnification parameters and allows uninformative priors to be used on magnification coefficients, without any loss of constraining power or prior volume concerns.

ABSTRACT The power spectrum of the nonlinearly evolved largescale mass distribution recovers only a minority of the information available on the mass fluctuation amplitude. We investigate the recovery of this information in 2D ‘slabs’ of the mass distribution averaged over ≈100 h−1 Mpc along the line of sight, as might be obtained from photometric redshift surveys. We demonstrate a Hamiltonian Monte Carlo method to reconstruct the nonGaussian mass distribution in slabs, under the assumption that the projected field is a pointtransformed Gaussian random field, Poissonsampled by galaxies. When applied to the Quijote Nbody suite at z = 0.5 and at a transverse resolution of 2 h−1 Mpc, the method recovers ∼30 times more information than the 2D power spectrum in the wellsampled limit, recovering the Gaussian limit on information. At a more realistic galaxy sampling density of 0.01 h3 Mpc−3, shot noise reduces the information gain to a factor of 5 improvement over the power spectrum at resolutions of 4 h−1 Mpc or smaller.

ABSTRACT We present a method for mapping variations between probability distribution functions and apply this method within the context of measuring galaxy redshift distributions from imaging survey data. This method, which we name PITPZ for the probability integral transformations it relies on, uses a difference in curves between distribution functions in an ensemble as a transformation to apply to another distribution function, thus transferring the variation in the ensemble to the latter distribution function. This procedure is broadly applicable to the problem of uncertainty propagation. In the context of redshift distributions, for example, the uncertainty contribution due to certain effects can be studied effectively only in simulations, thus necessitating a transfer of variation measured in simulations to the redshift distributions measured from data. We illustrate the use of PITPZ by using the method to propagate photometric calibration uncertainty to redshift distributions of the Dark Energy Survey Year 3 weak lensing source galaxies. For this test case, we find that PITPZ yields a lensing amplitude uncertainty estimate due to photometric calibration error within 1 per cent of the truth, compared to as much as a 30 per cent underestimate when using traditional methods.

ABSTRACT Recent cosmological analyses with largescale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model nonlinearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three twopoint correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the nonlocality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Ytransformation, the pointmass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like setup and also when applied to DES Y3 data. With the LSST Y1 setup, we find that the mitigation schemes yield ∼1.3 times more constraining S8 results than applying larger scale cuts without using any mitigation scheme.

ABSTRACT We crosscorrelate positions of galaxies measured in data from the first three years of the Dark Energy Survey with Comptony maps generated using data from the South Pole Telescope (SPT) and the Planck mission. We model this crosscorrelation measurement together with the galaxy autocorrelation to constrain the distribution of gas in the Universe. We measure the hydrostatic mass bias or, equivalently, the mean halo biasweighted electron pressure 〈bhPe 〉, using largescale information. We find 〈bhPe 〉 to be $[0.16^{+0.03}_{0.04},0.28^{+0.04}_{0.05},0.45^{+0.06}_{0.10},0.54^{+0.08}_{0.07},0.61^{+0.08}_{0.06},0.63^{+0.07}_{0.08}]$ meV cm−3 at redshifts z ∼ [0.30, 0.46, 0.62, 0.77, 0.89, 0.97]. These values are consistent with previous work where measurements exist in the redshift range. We also constrain the mean gas profile using smallscale information, enabled by the highresolution of the SPT data. We compare our measurements to different parametrized profiles based on the cosmoOWLS hydrodynamical simulations. We find that our data are consistent with the simulation that assumes an AGN heating temperature of 108.5 K but are incompatible with the model that assumes an AGN heating temperature of 108.0 K. These comparisons indicate that the data prefer a higher value of electron pressure than the simulations within r500c of the galaxies’ haloes.

ABSTRACT We use the small scales of the Dark Energy Survey (DES) Year3 cosmic shear measurements, which are excluded from the DES Year3 cosmological analysis, to constrain the baryonic feedback. To model the baryonic feedback, we adopt a baryonic correction model and use the numerical package baccoemu to accelerate the evaluation of the baryonic nonlinear matter power spectrum. We design our analysis pipeline to focus on the constraints of the baryonic suppression effects, utilizing the implication given by a principal component analysis on the Fisher forecasts. Our constraint on the baryonic effects can then be used to better model and ameliorate the effects of baryons in producing cosmological constraints from the nextgeneration largescale structure surveys. We detect the baryonic suppression on the cosmic shear measurements with a ∼2σ significance. The characteristic halo mass for which half of the gas is ejected by baryonic feedback is constrained to be $M_c \gt 10^{13.2} \, h^{1} \, \mathrm{M}_{\odot }$ (95 per cent C.L.). The bestfitting baryonic suppression is $\sim 5{{\ \rm per\ cent}}$ at $k=1.0 \, {\rm Mpc}\ h^{1}$ and $\sim 15{{\ \rm per\ cent}}$ at $k=5.0 \, {\rm Mpc} \ h^{1}$. Our findings are robust with respect to the assumptions about the cosmological parameters, specifics of the baryonic model, and intrinsic alignments.

ABSTRACT The CMB lensing signal from cosmic voids and superclusters probes the growth of structure in the lowredshift cosmic web. In this analysis, we crosscorrelated the Planck CMB lensing map with voids detected in the Dark Energy Survey Year 3 (Y3) data set (∼5000 deg2), expanding on previous measurements that used Y1 catalogues (∼1300 deg2). Given the increased statistical power compared to Y1 data, we report a 6.6σ detection of negative CMB convergence (κ) imprints using approximately 3600 voids detected from a redMaGiC luminous red galaxy sample. However, the measured signal is lower than expected from the MICE Nbody simulation that is based on the ΛCDM model (parameters Ωm = 0.25, σ8 = 0.8), and the discrepancy is associated mostly with the void centre region. Considering the full void lensing profile, we fit an amplitude $A_{\kappa }=\kappa _{{\rm DES}}/\kappa _{{\rm MICE}}$ to a simulationbased template with fixed shape and found a moderate 2σ deviation in the signal with Aκ ≈ 0.79 ± 0.12. We also examined the WebSky simulation that is based on a Planck 2018 ΛCDM cosmology, but the results were even less consistent given the slightly higher matter density fluctuations than in MICE. We then identified superclusters in the DES and the MICE catalogues, and detected their imprints at the 8.4σ level; again with a lowerthanexpected Aκ = 0.84 ± 0.10 amplitude. The combination of voids and superclusters yields a 10.3σ detection with an Aκ = 0.82 ± 0.08 constraint on the CMB lensing amplitude, thus the overall signal is 2.3σ weaker than expected from MICE.

Abstract The cosmic web contains filamentary structure on a wide range of scales. On the largest scales, superclustering aligns multiple galaxy clusters along intercluster bridges, visible through their thermal Sunyaev–Zel’dovich signal in the cosmic microwave background. We demonstrate a new, flexible method to analyze the hot gas signal from multiscale extended structures. We use a Compton
y map from the Atacama Cosmology Telescope (ACT) stacked on redMaPPer cluster positions from the optical Dark Energy Survey (DES). Cutout images from they map are oriented with largescale structure information from DES galaxy data such that the superclustering signal is aligned before being overlaid. We find evidence of an extended quadrupole moment of the stackedy signal at the 3.5σ level, demonstrating that the largescale thermal energy surrounding galaxy clusters is anisotropically distributed. We compare our ACT × DES results with the Buzzard simulations, finding broad agreement. Using simulations, we highlight the promise of this novel technique for constraining the evolution of anisotropic, nonGaussian structure using future combinations of microwave and optical surveys. 
ABSTRACT In this work, we present the galaxy clustering measurements of the two DES lens galaxy samples: a magnitudelimited sample optimized for the measurement of cosmological parameters, maglim, and a sample of luminous red galaxies selected with the redmagic algorithm. maglim/redmagic sample contains over 10 million/2.5 million galaxies and is divided into six/five photometric redshift bins spanning the range z ∈ [0.20, 1.05]/z ∈ [0.15, 0.90]. Both samples cover 4143 $\deg ^2$ over which we perform our analysis blind, measuring the angular correlation function with an S/N ∼ 63 for both samples. In a companion paper, these measurements of galaxy clustering are combined with the correlation functions of cosmic shear and galaxy–galaxy lensing of each sample to place cosmological constraints with a 3 × 2pt analysis. We conduct a thorough study of the mitigation of systematic effects caused by the spatially varying survey properties and we correct the measurements to remove artificial clustering signals. We employ several decontamination methods with different configurations to ensure the robustness of our corrections and to determine the systematic uncertainty that needs to be considered for the final cosmology analyses. We validate our fiducial methodology using lognormal mocks, showing that our decontamination procedure induces biases no greater than 0.5σ in the (Ωm, b) plane, where b is the galaxy bias.