skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Crack initiation during environment-induced cracking of metals: current status
Abstract Environment-induced cracking (EIC) research spanning the last 80 years for ferrous and non-ferrous metals in aqueous environments at ambient and elevated temperatures has concentrated on crack propagation. Studies clearly reveal EIC involves two differentiable processes, one controlling initiation and the other propagation. Utilization of advanced high-resolution electron microscopy over the last 20 years has enabled more focused studies of crack initiation for stainless steel and nickel-based alloys at elevated temperatures exposed to environments associated with the nuclear industry. More recently, when coupled with advancedin-situexperimental techniques such as time-lapse X-ray computed 3D-tomography, progress has also been made for aluminum alloys suffering EIC at ambient temperatures. Conventional wisdom states that chemical processes are typically rate-controlling during EIC initiation. Additionally, experimental evidence based on primary creep exhaustion ahead of the introduction of an aggressive environment indicates that time-dependent mechanically-driven local microstructural strain accommodation processes (resembling creep-like behavior) often play an important role for many metals, even for temperatures as low as 40 % of their melting points (0.4 Tm). EIC studies reveal initial surface conditions and their associated immediate sub-surface alloy microstructures generated during creation (i.e. disturbed layers) can dictate whether or not EIC initiation occurs under mechanical loading conditions otherwise sufficient to enable initiation and growth. The plethora of quantitative experimental techniques now available to researchers should enable significant advances towards understanding EIC initiation.  more » « less
Award ID(s):
2133630
PAR ID:
10543704
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Corrosion Reviews
Date Published:
Journal Name:
Corrosion Reviews
ISSN:
2191-0316
Page Range / eLocation ID:
289-312
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a strong demand for materials with inherently high creep resistance in the harsh environment of next-generation nuclear reactors. High entropy alloys have drawn intense attention in this regard due to their excellent elevated temperature properties and irradiation resistance. Here, the time-dependent plastic deformation behavior of two refractory high entropy alloys was investigated, namely HfTaTiVZr and TaTiVWZr. These alloys are based on reduced activity metals from the 4-5-6 elemental palette that would allow easy post-service recycling after use in nuclear reactors. The creep behavior was investigated using nano-indentation over the temperature range of 298 K to 573 K under static and dynamic loads up to 5 N. Creep stress exponent for HfTaTiVZr and TaTiVWZr was found to be in the range of 20–140 and the activation volume was ~16–20b3, indicating dislocation dominated mechanism. The stress exponent increased with increasing indentation depth due to a higher density of dislocations and their entanglement at larger depth and the exponent decreased with increasing temperature due to thermally activated dislocations. Smaller creep displacement and higher activation energy for the two high entropy alloys indicate superior creep resistance compared to refractory pure metals like tungsten. 
    more » « less
  2. Using direct high-speed imaging, we study the transition between different chip formation modes, and the underlying mechanics, in machining of ductile metals. Three distinct chip formation modes — continuous chip, shear-localized chip, and fragmented chip — are effected in a same material system by varying the cutting speed. It is shown using direct observations that shear-localized chip formation is characterized by shear band nucleation at the tool tip and its propagation towards the free surface, which is then followed by plastic slip along the band without fracture. The transition from shear-localized chip to fragmented chip with increasing cutting speed is triggered by crack initiation at the free surface and propagation towards the tool tip. The extent to which crack travels towards the tool determines whether the chip is partially fragmented or fully fragmented (discontinuous). It is shown that shear localization precedes fracture and controls the crack path in fragmented chip formation. Dynamic strain and strain-rate fields underlying the each chip formation mode are quantified through image correlation analysis of high-speed images. Implications for using machining as an experimental tool for fundamental studies of localization and shear fracture in ductile metals are also discussed. 
    more » « less
  3. Laser powder bed fusion (LPBF) has been increasingly used in the fabrication of dense metallic structures. However, the corrosion related properties of LPBF alloys, in particular environment-assisted cracking, such as corrosion fatigue properties, are not well understood. In this study, the corrosion and corrosion fatigue characteristics of LPBF 316L stainless steels (SS) in 3.5 wt.% NaCl solution have been investigated using an electrochemical method, high cycle fatigue, and fatigue crack propagation testing. The LPBF 316L SSs demonstrated significantly improved corrosion properties compared to conventionally manufactured 316L, as reflected by the increased pitting and repassivation potentials, as well as retarded crack initiation. However, the printing parameters did not strongly affect the pitting potentials. LPBF samples also demonstrated enhanced capabilities of repassivation during the fatigue crack propagation. The unique microstructural features introduced during the printing process are discussed. The improved corrosion and corrosion fatigue properties are attributed to the presence of columnar/cellular subgrains formed by dislocation networks that serve as high diffusion paths to transport anti-corrosion elements. 
    more » « less
  4. Tougher, lighter, and more formable and machinable metals for broader ranges of applications at higher temperatures are needed now more than ever. High-performance computing, high-resolution microscopy, and advanced spectroscopy methods, including neutrons and synchrotron x-rays, together with advances in metallurgy and metal mixology, reveal the potential of multicomponent advanced metals, such as multicomponent bulk metallic glasses and advanced high-entropy alloys. The development of new experimental approaches relates bulk properties and voxel-associated optimized properties throughout structures with high resolution. The correlations from in situ measurements greatly improve crystal plasticity-based models. This issue of MRS Bulletin overviews recent progress in the field, and this article highlights the importance of these new perspectives. The latest progress and directions in the science and technology for prospective high-temperature metals for structural applications are reported. 
    more » « less
  5. Structural health monitoring (SHM) is a rapidly growing field focused on detecting damage in complex systems before catastrophic failure occurs. Advanced sensor technologies are necessary to fully harness SHM in applications involving harsh or remote environments, life-critical systems, mass-production vehicles, robotic systems, and others. Fiber Bragg Grating (FBG) sensors are attractive for in-situ health monitoring due to their resistance to electromagnetic noise, ability to be multiplexed, and accurate real-time operation. Ultrasonic additive manufacturing (UAM) has been demonstrated for solid-state fabrication of 3D structures with embedded FBG sensors. In this paper, UAM-embedded FBG sensors are investigated with a focus on SHM applications. FBG sensors embedded in an aluminum matrix 3 mm from the initiation site are shown to resolve a minimum crack length of 0.286 ± 0.033 mm and track crack growth until near failure. Accurate crack detection is also demonstrated from FBGs placed 6 mm and 9 mm from the crack initiation site. Regular acrylate-coated FBG sensors are shown to repeatably work at temperatures up to 300 ∘ C once embedded with the UAM process. 
    more » « less