Abstract. Deep-time palynological studies are necessary to evaluate plant and fungal distribution under warmer-than-present scenarios such as those of the Middle Miocene. Previous palynological studies from southern McMurdo Sound, Antarctica (SMS), have provided unique documentation for Neogene environments in the Ross Sea region during a time of pronounced global warming. The present study builds on these studies and provides a new climate reconstruction using the previously published SMS pollen and plant spore data. Additionally, 44 SMS samples were reanalyzed with a focus on the fungal fraction of the section to evaluate the fungal distribution under warmer than present conditions. The probability-based climate reconstruction technique (CREST) was applied to provide a new plant-based representation of regional paleoclimate for this Miocene Climatic Optimum (MCO) locality. CREST reconstructs a paleoclimate that is warmer and significantly wetter than present in SMS during the MCO, with mean annual precipitation reconstructed at 1147 mm yr−1 (95 % confidence range: 238–2611 mm yr−1) and a maximum mean annual temperature of 10.3 ∘C (95 % confidence range: 2.0–20.2 ∘C) for the warmest intervals of the MCO. The CREST reconstruction fits within the Cfb Köppen–Geiger climate class during the MCO of SMS. This new reconstruction agrees with previous reconstructions using various geochemical proxies. The fungal palynological analyses yielded surprising results, with only a single morphotype recovered, in low abundance, with concentrations ranging up to 199 fungi per gram of dried sediment. The taxa present belongs to the Apiosporaceae family and are known to be adapted to a wide range of climate and environmental conditions. As fungi are depauperate members of the SMS MCO palynofloras and because the one morphotype recovered is cosmopolitan, using the fungi record to confirm a narrow Köppen–Geiger climate class is impossible. Overall, the study demonstrates refinement of plant-based paleoclimatic reconstructions and sheds light on the limited presence of fungi during the MCO in Antarctica.
more »
« less
Summer-Wet Hydrologic Cycle during the Middle Miocene of the United States: New Evidence from Fossil Fungi
Hydrologic reconstructions from North America are largely unknown for the Middle Miocene. Examination of fungal palynomorph assemblages coupled with traditional plant-based palynology permits delineation of local, as opposed to regional, climate signals and provides a baseline for study of ancient fungas. Here, the Fungi in a Warmer World project presents paleoecology and paleoclimatology of 351 fungal morphotypes from 3 sites in the United States: the Clarkia Konservat-Lagerstätte site (Idaho), the Alum Bluff site (Florida), and the Bouie River site (Mississippi). Of these, 83 fungi are identified as extant taxa and 41 are newly reported from the Miocene. Combining new plant-based paleoclimatic reconstructions with funga-based paleoclimate reconstructions, we demonstrate cooling and hydrologic changes from the Miocene climate optimum to the Serravallian. In the southeastern United States, this is comparable to that reconstructed with pollen and paleobotany alone. In the northwestern United States, cooling is greater than indicated by other reconstructions and hydrology shifts seasonally, from no dry season to a dry summer season. Our results demonstrate the utility of fossil fungi as paleoecologic and paleoclimatic proxies and that warmer than modern geological time intervals do not match the “wet gets wetter, dry gets drier” paradigm. Instead, both plants and fungi show an invigorated hydrological cycle across mid-latitude North America.
more »
« less
- Award ID(s):
- 2015813
- PAR ID:
- 10543763
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Research
- Volume:
- 7
- ISSN:
- 2639-5274
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fossil fungi from periods warmer than modern climates provide unique insights into the future impacts of anthropogenic climate change. Here we report the fossil fungal assemblage from the late Middle Miocene Kenslow Member of central England, associated with climatic conditions warmer than the present-day. The identification of 110 morphotypes, which primarily relate to moist environments and the presence of wood, have been used to develop a new nearest living relative palaeoclimate reconstruction. The fungal assemblage indicates a Köppen–Geiger climate class, represented by temperate conditions, no dry season, and warm summers. This new fungal-based palaeoclimate reconstruction technique holds exciting potential to explore critically important but poorly understood palaeoenvironments, and the resulting qualitative inferences align well with previously published palaeobotanical quantitative estimates of palaeoclimate. These findings show that diverse fungal assemblages can successfully be used to reconstruct past climates for the first time.more » « less
-
Abstract AimEfforts to predict the responses of soil fungal communities to climate change are hindered by limited information on how fungal niches are distributed across environmental hyperspace. We predict the climate sensitivity of North American soil fungal assemblage composition by modelling the ecological niches of several thousand fungal species. LocationOne hundred and thirteen sites in the United States and Canada spanning all biomes except tropical rain forest. Major Taxa StudiedFungi. Time Period2011–2018. MethodsWe combine internal transcribed spacer (ITS) sequences from two continental‐scale sampling networks in North America and cluster them into operational taxonomic units (OTUs) at 97% similarity. Using climate and soil data, we fit ecological niche models (ENMs) based on logistic ridge regression for all OTUs present in at least 10 sites (n = 8597). To describe the compositional turnover of soil fungal assemblages over climatic gradients, we introduce a novel niche‐based metric of climate sensitivity, the Sørensen climate sensitivity index. Finally, we map climate sensitivity across North America. ResultsENMs have a mean out‐of‐sample predictive accuracy of 73.8%, with temperature variables being strong predictors of fungal distributions. Soil fungal climate niches clump together across environmental space, which suggests common physiological limits and predicts abrupt changes in composition with respect to changes in climate. Soil fungi in North American climates are more likely to be limited by cold and dry conditions than by warm and wet conditions, and ectomycorrhizal fungi generally tolerate colder temperatures than saprotrophic fungi. Sørensen climate sensitivity exhibits a multimodal distribution across environmental space, with a peak in climates corresponding to boreal forests. Main ConclusionsThe boreal forest occupies an especially precarious region of environmental space for the composition of soil fungal assemblages in North America, as even small degrees of warming could trigger large compositional changes characterized mainly by an influx of warm‐adapted species.more » « less
-
Globally, the middle Cenozoic (Oligocene to early Miocene, ~33.9–15.97 Ma) was characterized by a warmer, wetter climate than present. Reconstructing the climate of this stratigraphic interval helps us to better understand the implications of present and future anthropogenically-driven climate change in an Earth system with an established Antarctic ice mass and comparable pCO2 levels (400–700 ppm). Relative to mainland Europe, little palaeoclimate work has been done on the British Isles for this time interval. Compiled middle Cenozoic palynology records from across the British Isles were used to quantitatively reconstruct palaeoclimate, which was then used to define Köppen-Geiger signatures for each palynomorph assemblage. These reconstructions were used to show the presence of a temperate, dry-winter and hot-summer (Cwa) Köppen-Geiger climate type before 31.8 Ma, which was possibly a short-lived event driven by precessional (~26 k.y.) forcing. We attribute reconstructions with dry-winter Köppen-Geiger classifications to combined eccentricity-obliquity-precession (~405 k.y.) forcing, after the Eocene-Oligocene Transition. Declines in Mean Annual Temperature, in Chattian sections, are associated with the Svalbardella-2 and 3 North Sea cooling events. The late Oligocene warming event is shown to have produced tropical rainforest (Af) Köppen-Geiger classification types in the British Isles. Following early Miocene glaciation, a temperate, no-dry-season, warm-summer (Cfb) signature was reconstructed. We suggest the present-day climate of the northwest margin of Europe is comparable to the early Miocene palaeoclimate. Under increased pCO2 concentrations, based on projected twenty-first century anthropogenic warming scenarios, there is potential for wetter summers becoming more prevalent within the next century.more » « less
-
Cool- and warm-season precipitation totals have been reconstructed on a gridded basis for North America using 439 tree-ring chronologies correlated with December–April totals and 547 different chronologies correlated with May–July totals. These discrete seasonal chronologies are not significantly correlated with the alternate season; the December–April reconstructions are skillful over most of the southern and western United States and north-central Mexico, and the May–July estimates have skill over most of the United States, southwestern Canada, and northeastern Mexico. Both the strong continent-wide El Niño–Southern Oscillation (ENSO) signal embedded in the cool-season reconstructions and the Arctic Oscillation signal registered by the warm-season estimates faithfully reproduce the sign, intensity, and spatial patterns of these ocean–atmospheric influences on North American precipitation as recorded with instrumental data. The reconstructions are included in the North American Seasonal Precipitation Atlas (NASPA) and provide insight into decadal droughts and pluvials. They indicate that the sixteenth-century megadrought, the most severe and sustained North American drought of the past 500 years, was the combined result of three distinct seasonal droughts, each bearing unique spatial patterns potentially associated with seasonal forcing from ENSO, the Arctic Oscillation, and the Atlantic multidecadal oscillation. Significant 200–500-yr-long trends toward increased precipitation have been detected in the cool- and warm-season reconstructions for eastern North America. These seasonal precipitation changes appear to be part of the positive moisture trend measured in other paleoclimate proxies for the eastern area that began as a result of natural forcing before the industrial revolution and may have recently been enhanced by anthropogenic climate change.more » « less
An official website of the United States government

