Abstract Near-Earth asteroids (NEAs) are a key test bed for investigations into planet formation, asteroid dynamics, and planetary defense initiatives. These studies rely on understanding NEA sizes, albedo distributions, and regolith properties. Simple thermal models are a commonly used method for determining these properties; however, they have inherent limitations owing to the simplifying assumptions they make about asteroid shapes and properties. With the recent collapse of the Arecibo Telescope and a decrease of direct size measurements, as well as future facilities such as LSST and NEO Surveyor coming online soon, these models will play an increasingly important role in our knowledge of the NEA population. Therefore, it is key to understand the limits of these models. In this work we constrain the limitations of simple thermal models by comparing model results to more complex thermophysical models, radar data, and other existing analyses. Furthermore, we present a method for placing tighter constraints on inferred NEA properties using simple thermal models. These comparisons and constraints are explored using the NEA (285263) 1998 QE2 as a case study. We analyze QE2 with a simple thermal model and data from both the NASA IRTF SpeX instrument and NEOWISE mission. We determine an albedo between 0.05 and 0.10 and thermal inertia between 0 and 425J m−2s−1/2K−1. We find that overall the simple thermal model is able to well constrain the properties of QE2; however, we find that model uncertainties can be influenced by topography, viewing geometry, and the wavelength range of data used.
more »
« less
Tidal Disruption of Near-Earth Asteroids during Close Encounters with Terrestrial Planets
Abstract Numerical modeling has long suggested that gravitationally bound (or so-called rubble-pile) near-Earth asteroids (NEAs) can be destroyed by tidal forces during close and slow encounters with terrestrial planets. However, tidal disruptions of NEAs have never been directly observed nor have they been directly attributed to any families of NEAs. Here we show population-level evidence for the tidal disruption of NEAs during close encounters with Earth and Venus. Debiased model distributions of NEA orbits and absolute magnitudes based on observations by the Catalina Sky Survey during 2005–2012 underpredict the number of NEAs with perihelion distances coinciding with the semimajor axes of Venus and Earth. A detailed analysis of the orbital distributions of the excess NEAs shows that their characteristics agree with the prediction for tidal disruptions, and they cannot be explained by observational selection effects or orbital dynamics. Accounting for tidal disruptions in evolutionary models of the NEA population partly bridges the gap between the predicted rate of impacts by asteroids with diameters of tens of meters and observed statistics of fireballs in the same size range.
more »
« less
- Award ID(s):
- 2108440
- PAR ID:
- 10543969
- Publisher / Repository:
- ApJL
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 960
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We are conducting a survey using twilight time on the Dark Energy Camera with the Blanco 4 m telescope in Chile to look for objects interior to Earth’s and Venus’ orbits. To date we have discovered two rare Atira/Apohele asteroids, 2021 LJ4 and 2021 PH27, which have orbits completely interior to Earth’s orbit. We also discovered one new Apollo-type Near Earth Object (NEO) that crosses Earth’s orbit, 2022 AP7. Two of the discoveries have diameters ≳1 km. 2022 AP7 is likely the largest Potentially Hazardous Asteroid (PHA) discovered in about eight years. To date we have covered 624 square degrees of sky near to and interior to the orbit of Venus. The average images go to 21.3 mag in the r band, with the best images near 22nd mag. Our new discovery 2021 PH27 has the smallest semimajor axis known for an asteroid, 0.4617 au, and the largest general relativistic effects (53 arcsec/century) known for any body in the solar system. The survey has detected ∼15% of all known Atira NEOs. We put strong constraints on any stable population of Venus co-orbital resonance objects existing, as well as the Atira and Vatira asteroid classes. These interior asteroid populations are important to complete the census of asteroids near Earth, including some of the most likely Earth impactors that cannot easily be discovered in other surveys. Comparing the actual population of asteroids found interior to Earth and Venus with those predicted to exist by extrapolating from the known population exterior to Earth is important to better understand the origin, composition, and structure of the NEO population.more » « less
-
NA (Ed.)Catalina Sky Survey (CSS) is a major survey of Near-Earth Objects (NEOs). In a recent work, we used CSS observations from 2005–2012 to develop a new population model of NEOs (NEOMOD). CSS’s G96 telescope was upgraded in 2016 and detected over 10,000 unique NEOs since then. Here we characterize the NEO detection efficiency of G96 and use G96’s NEO detections from 2013–2022 to update NEOMOD. This resolves previous model inconsistencies related to the population of large NEOs. We estimate there are 936 ± 29 NEOs with absolute magnitude 𝐻 < 17.75 (diameter 𝐷 > 1 km for the reference albedo 𝑝V = 0.14) and semimajor axis 𝑎 < 4.2 au. The slope of the NEO size distribution for 𝐻 = 25–28 is found to be relatively shallow (cumulative index ≃ 2.6) and the number of 𝐻 < 28 NEOs (𝐷 > 9 m for 𝑝V = 0.14) is determined to be (1.20 ± 0.04) × 107 , about 3 times lower than in Harris & Chodas (2021). Small NEOs have a different orbital distribution and higher impact probabilities than large NEOs. We estimate 0.034 ± 0.002 impacts of 𝐻 < 28 NEOs on the Earth per year, which is near the low end of the impact flux range inferred from atmospheric bolide observations. Relative to a model where all NEOs are delivered directly from the main belt, the population of small NEOs detected by G96 shows an excess of low-eccentricity orbits with 𝑎 ≃ 1–1.6 au that appears to increase with 𝐻 (≃ 30% excess for 𝐻 = 28). We suggest that the population of very small NEOs is boosted by tidal disruption of large NEOs during close encounters to the terrestrial planets. When the effect of tidal disruption is (approximately) accounted for in the model, we estimate 0.06 ± 0.01 impacts of 𝐻 < 28 NEOs on the Earth per year, which is more in line with the bolide data. The impact probability of a 𝐻 < 22 (𝐷 > 140 m for 𝑝V = 0.14) object on the Earth in this millennium is estimated to be ≃ 4.5%more » « less
-
Abstract We have detected cometary activity on minor planet 2019 OE31through both theActive AsteroidsCitizen Science program and an independent archival search. Before 2013, 2019 OE31was on a Centaur orbit, between the orbits of Jupiter and Neptune. Centaurs are objects in transition from the outer solar system to the inner solar system. They play a vital role in the understanding of the Kuiper Belt and comets. In 2013 October, following a close encounter with Jupiter, 2019 OE31moved to an orbit entirely interior to that of Jupiter. This reduced orbital distance and, hence, increased temperature is likely the cause of the observed activity. Through a suite of orbital dynamics simulations, we find that 2019 OE31will experience many more similar encounters and is statistically likely to return to a Centaur orbit, potentially within the next 80 yr, from its current “vacation.”more » « less
-
Abstract Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These ‘hot Jupiter’ planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6–8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity ofe = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity.more » « less
An official website of the United States government

